' Sustainable
' Software Concepts

SYNTHESIS AG

www.synthesis.ch

Reference Manual for

SDK and Plugin Interface V2.2.0

of the
Synthesis Sync Engine
V3.4

18-Jan-2018

© 2004-2018 by Synthesis AG

Page 2

This manual was written for Synthesis SyncML Engine V3.4

This manual and the Synthesis Sync Server/Client software described in it are copyrighted, with
all rights reserved. This manual and the Synthesis Sync Server/Client software may not be copied,
except as otherwise provided in your software license or as expressly permitted in writing by Syn-
thesis AG (http://www.synthesis.ch/).

Synthesis SyncML Engine uses parts of the following software:

expat - XML parser - http://sourceforge.net/projects/expat

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

SyncML toolkit - http://sourceforge.net/projects/syncml-ctoolkit/

This product includes software developed by The SyncML Initiative.
Copyright (c) 2000 Ericsson, IBM, Lotus, Matsushita Communications Industrial Co., LTD,
Motorola, Nokia, Palm, Inc., Psion, Starfish Software. All rights reserved.

zlib compression library - hitp://www.zlib.net/

zlib software copyright © 1995-2004 Jean-loup Gailly and Mark Adler

SQLite 3 database engine - http://www.sqlite.org/

PCRE Library - http://www.pcre.org/license.txt

Copyright (c) 1997-2007 University of Cambridge
The project files to create the SySync SDK plug-ins are using the following software:

C/C++ CodeWarrior compiler environment - hitp://www.metrowerks.com

Copyright © 2005 Metrowerks, a Freescale company. All rights reserved.

Visual Studio - Windows Phone 8/ 8.1 / 10 http://www.microsoft.com
Copyright © 2005-2013 Microsoft Corporation.

XCode - http://developer.apple.com/tools/xcode Copyright © 1999-2017 Apple Inc.

Android - http://www.google.com/mobile/android Copyright © 2009-2017 Google

Disclaimer

Use of the Synthesis Sync Setver/Client software and other software accompanying your license (the "Software")
and its documentation is at your sole risk. The Software and its documentation (including this manual), and software
maintainance by Synthesis AG, if applicable, are provided "AS IS" and without warranty of any kind and Synthesis
AG EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LI-
MITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, TITLE, AND NON-INFRINGEMENT. IN NO EVENT SHALL SYNTHESIS AG BE LI-
ABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 3

Contents
1. INtroductioncciciiiiiiier s r s e anaaaananaan 5
2. OVEOrVIOW .uiciiicusesssnssnsssnsssnssnsssnssnsnnnnnnnnnnns 6
3. Distribution FileS....ccccieiiimimnnsnnsnmsnssssssansnssssnsnna s s snnsnnannnnannnnnsns 8
4. SySync DBApi SDK description.....ccccuumimenmsnssssmssnsassnssnssnssnsnnsnnnnns 12
4.1 How to write a database plugin 2. 12
4.2 Module Handling........ccooooioiieeeeeeeee 12
4.3 Session HandliNg........coooooeiiieeeee 13
4.4 Datastore Handlingcooooo oo 15
4.4.1 The “OPen” SECHONciiiii et e e e 15
4.4.2 The “admin read” SECHONcccoiiiiiiiiiiiiiiieeeeeeeeeeee 16
4.4.3 The “read” SECHONccoiviiiiiiiiiiieeeeeeee e 16
4.4.4 The “Update” SECHONcccciiieieece e 17
4.4.5 The “admin write” SECON..........ccoiiiiiiiiiiiiiii e 18
4.4.6 The “general” SECHONccoiiiiiiiiiiiiiiieeeeee e 18
4.4.7 The “CloSe” SECHON......ccoviiiiiiiiiiiiiieeeeeeeeeeee e 19
4.5 Callback Calls........ccooe i 19
4.6 The global context ... 20
4.7 The OceanBlue / SnowWhite adapter............oooevviiiiiiiiiiiieccee e, 21
5. SySync UlApi SDK description.....cccceemenmsmsnssnssnsansnssnssnssnsnnsnnsnnsnns 22
5.1 Connecting the SyncML core library via UIAPI......ccooeiiieiiiiiieeeeee 22
5.2 Using a SyncML Client Library via UIAPIcoooeiieiieieeeeeeeeeeeeeeeeeeeeeee 23
5.2.1 Preparation for initialisation............cccooooo i 23
5.22ENgine INit ... 24
5.2.3 Acessing Settings. ... 25
5.2.3.1 Preparations before accessing settings profilesccccccviiiiiinnn. 25
5.2.3.2 Editing SettiNgS......cccvviiiiiiiiiiiiiiiiiiiiieiieeeeeeee e 27
5.2.4 RUNNING SYNC SESSIONSccoiiiiiiiiiiiieeeeee e 27
5.2.5 Example client app: ui_app_example...........ouuiiiiieieiiiiieiceeee e 30
6. Setup GUIde..ccrrurrammrnnsnn s sas s sa s s s s s aa s nann s nnnannnnnnnnnnnnn 32
6.1 Plug-in System for C/CH+ 32
6.2 Plug-in System foriOS ... 33
6.3 Plug-in System for Java.........cooooooiiiiie 33
6.3.1 ANAroid SEIUPcceeeeeeeee e 34
6.4 Plug-in SyStem fOr CH ... 35
6.4.1 Windows Phone 8 /8.1 /10 setup......ccceeeeieiiiiiiiiee e 35
6.5 Plug-in module XML configurationccoooooiiioiooiieeeeeee e 37
6.6 Module Naming CONVENTIONccooiiiieeeeeee e 38
6.7 PlUgin_INfO Program ... oo 39
6.8 UIAPI CH INtErfacCe.cooeeeeeeeee et e e e eanees 40

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 4

7. Change History.....cueaiimimsmmsnsnssnssssnssnsssnssnssnsansansnnsnnsnnsnsnnsnnannnnnn 41
7.1 Changes for SDK 1.3.0 .. 41
7.2 Changes for SDK VT.4.0 ... 42
7.3 Changes for SDK V1.5.0 ... 42
7.4 Changes for SDK VT1.6.0 ... 43
7.5 Changes for SDK VT.6.2 ... 43
7.6 Changes for SDK V1.7.0 ... 44
7.7 Changes for SDK V1.8.0 ... 44
7.8 Changes for SDK VT1.9.0 ... 44
7.9 Changes for SDK V1.0.T 44
7.10 Changes for SDK V1.9.2 ... 44
7.11 Changes for SDK V2.0.0 ... 44
7.12 Changes for SDK V2.1.0 ... 44
7.13 Changes for SDK V2.2.0 ... 45

8. DBApi Interface descCription.....cccccemsmsnmmsnmsnmssnssnssssssnssnnssnnsnnnsnnsnnns 46
8.1 FUNCHON OVEIVIEW ... 46
8.2 Function DocumMeNtationccoooooiiiiiieeeeee e 47

9. UlApi Interface description.....ccccccrmsmmsnmmsnssnssssssnssssssnssnsssnnsnnnsnnsnnnn 62
9.1 Functions in the Ul_Call_In call-in structureccccoooiiiiiiiiiiicicieee e 62
9.2 TEngineModuleBase Class Reference.........ccooooeeeiiiieiiieeiieeieeeeeeeeeeeeeeeeeeen 63

9.2.1 Public Member Function OVerview............cccceeiviiiiiiieeeeee 63
9.2.2 Member Function Documentation ... 65
9.3 Settings keys supported in SyncML Client Engine ..., 72
9.3.1 Global settings keys - accessed using OpenKeyByPath()cccceeee. 72
9.3.2 Session local settings/values, accessed using OpenSessionKey()........... 76

10. Error COUeS. .mummummummmmtnmsnnsnnnsnnsnssnssnssnsnssnssnssnssnsnnsnnsnnsnnsnnnnsnnsnnnnnss 77
10.1 SYNCML Status COUESccoeiiiiieiieiiieeee e 77
10.2 Internal Error COAEScooiiiiiiiiiiiiieeeee e 78

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 5

1. Introduction

Thank you for choosing Synthesis Sync Server/Client as your SyncML solution. It provides
you with a very efficient compliant SyncML engine with many advanced features and especially a
high configurability.

Synthesis Sync Server/Client exists in different versions for different database interfaces.

This manual covers Synthesis SyncML products supporting custom plugins for interfacing with
the database (DB Api), like the Synthesis SyncML Servers in the PRO version as well as Synthe-
sis SyncML library products which come as a loadable library (.dll, .so, .dylib) and have a API to
access the SyncML functionality from a client application (UI Api) .

Custom plugins and applications can be written in C/C++, C# and Java as well as in any pro-
gramming language capable of the C-style calling conventions (e.g. Borland Delphi).

This manual contains the reference for the Software Development Kit (SDK) required to create
both custom database plugins and applications.

This manual does not cover configuration of the SyncML engine itself. Please refer to the
SvSvnc_config reference.pdf manual which is part of the SDK package and most server product
packages.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 6

2. Overview

Synthesis AG makes their SyncML engine functionality available for customized database plug-in
adapters as a Software Development Kit (SDK). Synthesis Plugin technology allows the custo-
mer to develop data base adapters or user interfaces without the need of understanding the de-
tails of the SyncML standard. It's an ideal division of work between Synthesis and the customer's
project: Synthesis delivers a scalable, high performance SyncML. OMA DS 1.2 engine, which is
interoperability-tested against a huge variety of SyncML devices on the market. The customer
only needs the specific knowledge to access his own data base framework or his own user inter-
face which can be written in several programming languages.

A small interface with only 48 + 23 well documented and easy-to-use functions is the bridge of
interaction. All SyncML protocol details are hidden.

There are mainly two sections of the SDK:
* The data base interface (DBApi) for writing data base plugins (see chapter 4).

* The user interface (UIApi) for writting user interfaces (see chapter 5).

Both sections can be used completely independently, though some interface files are shared.

Custometr‘s

DB Plugin A

Synthesis

SySync
Engine

Customer*‘s
DB Plugin B

Customer*s Synthesis
application SySync
with user interface Engine

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zirich, Switzerland - www.synthesis.ch

Page 7

* Programming interface for C/C++.

* A plug-in for access to Java thru JNI (Java Native Interface) is also available.

* The Ul and DB interfaces for C# are available (since version V1.4.0).

* The Ul and DB interfaces for Delphi are available (since version V1.4.0).

* Other interfaces will be implemented on request.

* ,Ready to use” example code for a demo database module in C, a ,,textdb* interface in
C++, the OceanBlue/SnowWhite example adapter in C++ and a demo module in Java,
C# and Delphi are part of the package to demonstrate the DBApi (see chapter 4).

* ,Ready to use” complete SyncML client examples for Mozilla sunbird calendar for Win-
dows/Delphi, MacOSX/Cocoa/XCode and Linux are included to demonstrate the Ul
Api (see chapter 5). Several small sample applications to demonstrate specific aspects of
the UIApi are also available.

* Windows, Linux, Mac OSX, iOS, MacOSX, Android and Windows Phone 8 target
platforms are supported at this time. For development, Metrowerks' CodeWarrior project
files are available, as well as Visual Studio 2012 project files for Windows and Windows
Phone 8, XCode project files for Mac OSX and iOS, a makefile for Linux and the Eclipse
environment for Android.

* Versions for other platforms are planned for the future.

* The code can be compiled by the customer as an application for the UI application and as
a Dynamic Link Library (DLL) for the DB Api plugins.

* Multiple plug-ins can be used in parallel at the same time.

* The SDK allows multi-threading to support multiple simultaneous sessions of the
SyncML server.

* FEasy configuration via the main XML configuration file

* There is no specific version of the Synthesis SyncML Server/Client with the plug-in
technology, all future servers will contain it. Only the license decides, whether the functi-
onality can be used or not.

* The Synthesis demo server and client contain the current version of ,,SDK_textdb* as a
built-in plug-in.

With the SySync DBApi SDK, the customer is able to create plug-ins, which will be called direct-
ly by the Synthesis SyncML engine. The SyncML engine acts as a master: It makes subroutine
calls into the plugin DLL. Each routine must return an error status, which will be handled by the
engine. The main three blocks are the Module, the Session and the Datastore handling. These
three blocks are normally kept within one DLL, but they can be separated into different DLLs as
well. The description of each routine with several programming hints can be found in the inter-
face definition file ,,sync_dbapih®. Note that the DBApi plugin interface is not available in all
variants of Synthesis SyncML client libraries (such as the free DEMO variants).

The access to all blocks is context based, so at the beginning a routine ,,Create_ XXX will be
called, which has to return a unique identifier which will be used for each subsequent call of this
context. The ,,Delete_ XXX will remove this context again later. Variables which are local within
such a context must be stored within this environment during its lifetime. This can be done either
by using the context identifier as pointer to a local structure or using it as an index.

With the SySync UIApi SDK, the customer can write his own user interface and communication
code (in the current version for SyncML available for client applications) and is calling the
SyncML engine for initialisation, syncing, message reading/writing and parameter setup.
In this configuration, the UI application is usually a program which acts as master and is using
the SyncML engine as shared (or linked) library.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 8

3. Distribution Files

The distribution media (normally a .ZIP archive) contains the following files
(NOTE: depending on the version you have, not all of the listed files will be included):

SySync SDK
C / C++ package

Sources DLL UI_Appli- DB_Interfaces
cations
| | | e
engine_defs.h sync_dbapi_demo.c
generic_types.h SDK.def Ul_app_example.cpp DLL/target_options.h
syetrot.h UI_utilh / .cpp
sync_include.h dbapi_DLL.lib
sync_dbapidefh |
sync_dbapih
. sync_dbapi_text.cpp
admindata.h / .cpp DLL/target_options.h
blobs.h / .cpp
dbitem.h / .cpp
SDK_utilh / .c l
SDK_supporth /.cpp UI application
stringutilh / .cpp
timeutilh / .cpp example oceanblue.h / .cpp

snowwhite.h / .cpp

enginemodulebase.h / .cpp . h
\ enoinemodulebridee.h / .cop J myadapter.

e I

DI.IL core

sysync_SDK_linux.mk
sysync_SDK_linux64.mk

sysync_SDK_win.mcp
+_visual.veproj CodeWarrior, Visual Studio Example plug-in modules
XCode project files XCode project files / makefile

(some of these files,
depending on the platform)

There are other subdirectories with specific projects examples for C#, Delphi, XCode (sunbird
client example),

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

The JNI / Java files can be found at:

SySync SDK
for Java

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zirich, Switzerland - www.synthesis.ch

SDK javadb.java

uiapp main.java
(or android_main.java)

account.java
actives.java
Base64.java
custom.java
dat_entry.java
dat_inUse.java
datastore.java
DB_Callback.java
debug.java
enabled.java
engine_defs.java
enginemodulebase.java
interface_*.java
ItemID.java
JCallback64.java
KeyH.java
MaplD.java
module.java
profile.java
SDK_admin.java
SDK_def.java / SDK_utiljava
SDK_javadb.java
session_plugin.java
SessionH.java
setup.java

stats.java
syerror.java
sync_dbapidef.java
TEngineProgessInfo.java
tokens.java
uiapp.java

VAR_boolean.java
VAR_byte.java
VAR_byteArray.java
VAR _intjava
VAR_long.java
VAR_module.java
VAR_short.java
VAR_String.java

Page 9

Page 10

All SDK platforms with Java interface are now based on a ,,com.sysync® package of the Java
environment.

The Java SDK for MacOSX, Windows and Linux for eatlier versions has been provided within
the ,,sysync® package and outside any package. From V1.6.1 onwards, all platforms are based
now on the package ,,com.sysync® using 64 bit (long) signatures for both Ul and DB adap-
ters, the former entry points to the engine however are still available.

The Java SDK contains an example of a DB adapter example without functionality (compa-
rable to the SDK_demo adapter, written in C language): SDK_javadb.java.

There is also a Java example which can be used as starting point for a sync UI application:
uiapp_main.java (or android_main.java).

The other java modules of the package contain:

* engine_defs, syerror, sync_dbapidef:
const definitions of the engine, which are equivalent to the corresponding C/C++ files.

* VAR_* function/method parameters of scalar types which can be changed inside
(equivalent to VAR parameter in Pascal or & paramters in C++)

* JCallback64: The calling interface to the engine

e DB_Callback, KeyH, ItemID, MapID, SessionH, TEngineProgressInfo:
The structured types of the Callback/Call-In methods

* enginemodulebase / debug / SDK_util:
Some utlity functions, the mainly help to use GetValue/SetValue directly for several
integer, string and buffer types

* account, actives, Base64, custom, datastore, profile, session_plugin, stats, ... :
More utility structures and methods

* uiapp: The app setup (reading the config file) and session loop for the UI application,
called from uiapp_main (or android_main)

There are two direct entry points each to the engine (as client or as server)

// direct calls to the Synthesis SyncML engine (as client)
static native short SySync_ConnectEngine(DB_Callback aCB, VAR_int aEngVersion,
int aPrgVersion,
short aDebugFlags,
String jClassName);
static native short SySync_DisconnectEngine(long aCB);

// direct calls to the Synthesis SyncML engine (as server)
static native short SySync_srv_ConnectEngine(DB_Callback aCB, VAR_int aEngVersion,
int aPrgVersion,
short aDebugFlags,
String jClassName);
static native short SySync_srv_DisconnectEngine(long aCB);

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 11

Please note, that the server engine is not yet available for all SDK platforms.
The server entry points are only available for the com.sysync package.

For clients also the com.sysync package entry points should be used, the former entry points are
however still available for downwards compatibility reasons.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 12

4. SySync DBApi SDK description

The main three blocks of the SySync Software Development Kit (SDK) are the Module, the
Session and the Datastore handling. These three blocks are normally kept within one DLL, but
they can be separated into different DLLs as well. The description of each routine with several
programming hints can be found in the interface definition file ,,sync_dbapih* and in chapter 7
of this manual. Here is an overwiew over the routines of these three main blocks:

4.1 How to write a database plugin ?

After having chosen the programming language for the plugin (C, C++, C#, Java, Delphi), the
best starting point is to take the dbapi example and add the specific functionality. Not all functi-
ons must be implemented at all or right from the beginning, replacement can be done step by
step. The calling direction is always from SyncML engine to the plugin module and returning
afterwards to the SyncML engine (usually with an error code). The DBApi plugin has identical
structure for SyncML servers and clients, so the same plugin module can be used on both sides.
For C++ programming, a good starting point is the OceanBlue / SnowWhite adapter, see chap-
ter 4.7.

It is recommended to use the callback debug output system, which is already part of all example
files. So the DBApi plugin will write the flow information directly into the log file.

A good starting point is the implementation and adaption of the module context which must
return information of the plugin module to the engine. All basic information is already imple-
mented at the example files.

In a second phase the session context is needed for assigning user and devices, here a minimum
setup for login handling is requested.

The most important part is the datastore context handling where the user data will be read and
written. The admin section needn’t to be implemented for every database plugin, as it can be
handled by a different module as well (the config file must contain the appropriate info for this).

A detailed descriptions of these context systems is described in the next chapters.

4.2 Module Handling

- Module_CreateContext

- Module_Version

- Module_Capabilities

- Module_PluginParams

- Module_DisposeObj *)
- Module_DeleteContext

*) Not implemented for JNI and C#, because Java and C# run their own garbage collection

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 13

This is the set of routines for the Plug-In access on the module level. When the SyncML engine
connects to a Plug-In module, ,,Module_CreateContext® will be called first.When disconnecting,
,2Module_DeleteContext™ will be called as the final call. The SyncML engine will create a module
context for the sessions and one for each datastore admin and data section.
,Module_CreateContext™ can either create a new context or share a global module context a-
mong session and datastores. Module context ,,0“ is reserved.

,2Module_Version® and ,,Module_Capabilities* inform the engine, what is currently supported
within the plug-in module. With ,,Module_PluginParams® the SyncML engine informs the plug-
in module about <plugin_params> of the XML config file.

The plugin must be able to return ,,Module_Version® of context ,,0° without any preceding
,Module_CreateContext™. The module version cannot be defined by the plugin programmer, as
it contains compatibility information for the engine. The only thing the user can define is the
build number 0..255.

,Module_Capabilities” can return NoField identifiers (example: ,,plugin_sessionauth:no®)
which allows to remove some DLL functions completely, not even the entry points must be avai-
lable then. This is also true for the Java environment where these methods needn’t to be imple-
mented, if switched off. For C# all functions must be available.

Supported NoField sections:

- Plugin_Session ,»plugin_se:no* (the whole session)

- Plugin_SE_Adapt ,,plugin_sessionadapt:no* (session adaptitem)

- Plugin_SE_Auth ,»plugin_sessionauth:no* (session login)

- Plugin_ DV_Admin ,,plugin_deviceadmin:no* (session admin)

- Plugin_DV_DBTime ,»plugin_dbtime:no* (session ,,GetDBTime")
- Plugin_Datastore ,»plugin_ds:no (the whole datastore)
- Plugin_DS_Admin ,»plugin_datastoreadmin:no* (admin part)

- Plugin_DS_Data ,»plugin_datastore:no* (data part)

- Plugin_DS_Data_Str ,»plugin_datastore_str:no® (data part as str)

- Plugin_DS_Data_Key ,»plugin_datastore_key:no* (data part as key)

- Plugin_DS_Blob ,»,plugin_datablob:no* (BLOB support)

- Plugin_DS_Adapt ,»plugin_dataadapt:no* (data adaptitem)

The plugin_info program, which is part of the SDK package, shows the feedback about these

informations.

NOTE: The admin part requires also BLOB support for SyncML 1.2. That’s because an in-
complete item during suspend/resume will be stored as BLOB.

,Module_DisposeObj“ asks for deallocation of memory (which has been allocated within the
module to get the capabilities string).

4.3 Session Handling
These routines handle the session context at a plug-in module. Main tasks of this blocks are devi-

ce info & nonce handling and the user authentification (login). The return values of this block
will be used later to access the datastores.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 14

NOTE: The Session_PasswordMode mode must be in line with the config file’s authentification
settings.

NOTE: The client side requires only a rudimentary session handling. E.g. for Java clients the
session_plugin.java module can be used: It’s mainly switching the datastore debug callback to the
session log file. But no user/login or nonce handling is usually needed on the client side.

Multiple sessions can run in parallel, using the concept of multi-threading at the SyncML engine.
Therefore all operations MUST refer only to the <sContext> variable (which must be created in
the plug-in function ,,Session_CreateContext™ and deleted with ,,Session_DeleteContext*).

The SyncML engine will never call a context again after ,,.Session_DeleteContext®, it assumes that
all allocated resources of the session are removed there.

Interference between sessions should be avoided or must be made thread-safe. Even the thread
of a running session can change: The SyncML engine will give a notification before such a change
by calling the routine ,,Session_ThreadMayChangeNow*. As the name says, it may change (but it
must not). If this information is not needed for the plugin module, it can be implemented empty.

- Session_ CreateContext

- Session_Adaptltem 1)
- Session_CheckDevice 2)
- Session_GetNonce 2)
- Session_SaveNonce 2)
- Session_SaveDevicelnfo 2)
- Session_GetDBTime 3)
- Session_PasswordMode 4)
- Session_Login 4)
- Session_Logout 4)

- Session_ThreadMayChangeNow

- Session_DisposeOb;j 5)
- Session_DispItems 6)
- Session_DeleteContext

1) Needn’t to be implemented with ,,plugin_sessionadapt:no* at Module_Capabilities

2) 'These routines will be called only, if <api_deviceadmin> is set to yes at the config
Needn'’t to be implemented with ,,plugin_deviceadmin:no* at Module_Capabilities

3) Needn’t to be implemented with ,,plugin_dbtime:no“ at Module_Capabilities

4) These routines will be called only, if <api_sessionauth> is set to yes at the config
Needn'’t to be implemented with ,,plugin_sessionauth:no® at Module_Capabilities

5) Not implemented for NI and C#, because Java and C# run their own garbage collection
6) Will never be called by the SyncML engine; for debug purposes only.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 15

4.4 Datastore Handling

A datastore will always be accessed within a session. Multiple datastore accesses within a session
will not run sequentially, they can even run in parallel to other sessions. The datastore handling
has always the same flow: open — [admin read | - read — update — [admin write | - close. Therefore
the datastore handling is divided into several sub sections. Detailed description can be found at
,»sync_dbapih®.

NOTE: For each datastore two separate contexts will be opened for the admin and the data
part. This is because they can be handled by two separate plugin modules or one of them as
ODBC, the other one as plugin. So they will be handled separately even if they are using the same
plugin module.To distinguish which one is which, the engine can be configured (by returning
,ZADMIN_Info:yes* with ,,Module_Capabilities*) to add the word ,, ADMIN* to <aContext-
Name> of ,,CreateContext* when called as admin context.

4.4.1 The “open” section

The ,,open® section will ,,Create_Context® and provides context and filter options to the
SyncML engine.

- CreateContext
- ContextSupport
- FiltetSupport"

NOTE: ,,ContextSupport™ and ,,FilterSupport™ calls will appear usually at the beginning of the
data store handling, but under certain conditions they can be called at any time during the da-
tastore handling. Multiple calls are possible.

Example:
FilterContext call 1: daterangestart:20070219T191809%
daterangeend:20070619T1918092

FilterContext call 2: staticfilter:
dynamicfilter:
invisiblefilter:F.SYNCLVL:=0|F.SYNCLVL*=E

FilterContext call 1 will pass the /dr(-before/after) conditions (as ISO8601 time) to the plugin.
The field names are predefined, for details see also the filter section at the Synthesis Config Refe-
rence manual. The plugin should return 2 (for 2 supported fields), if both values are supported
and fully considered. It should return 0, if they are not or partly considered. E.g. a plugin might
be able to filter only on date resolution, so it can make this raw prefiltering. By returning 0, the
engine will make still the fine filtering.

FilterContext call 2 will switch off staticfilter and dynamicfilter and will try to install the invisible-

filter. If the plugin supports invisible filtering, it should return the value 3 (for 3 supported fields).
datarangestart/datarangeend are not affected with the 2™ call, so they are still active.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 16

4.4.2 The “admin read” section

The ,,admin read* section allows to handle the map tables. Detailed description can be found in
,»sync_dbapih®. All routines of this section can be implemented empty with return code
DB_Forbidden = 403, if the admin tables will be handled by the SyncML engine itself.

There is even a way to remove these routines completely.
NOTE: For Windows, the according entry points must be removed from the ,,.def™ file.

- LoadAdminData
- ReadNextMapltem

These routines will be called only, if <plugin_datastoreadmin> is set to yes in the config.
It needn’t to be implemented with ,,plugin_datastoreadmin:no“ at Module_Capabilities

NOTE: Some of the Synthesis SyncML (client) engines have the admin part built-in, so it can-
not be redirected to a plugin module for these cases.

4.4.3 The “read” section

The ,,read* section starts with ,,StartDataRead‘ and ends with ,,EndDataRead*.

- StartDataRead

- ReadNextltem *)

- ReadNextltemAsKey)

- ReadItem *)

- ReadltemAsKey)

- ReadBlob)

- EndDataRead

*) Needn’t to be implemented with ,,plugin_datastore:no® at Module_Capabilities

) Needn’t to be implemented with ,,plugin_datablob:no® at Module_Capabilities

,,ReadNextItem*/ , Readltem*: <altemData> returns the data, formatted as multiline,
where <aa> / <cc> are the identifiers and <bb> / <dd> the data fields:

The field separator generated by the engine is <CRLF> = \r\n = 0x0d 0x0a..

(' The engine is able to handle <CR> only, as well as <LF> only as separator)

aa:bb<CRLF>cc:dd[<CRLF>]

The identifiers are either assigned to the fieldmap names, or just numbered by an index,
if automap indexasname is true:

Example:
<altemData>:
0:Joe<CRLF>1:Smith<CRLF>2:New York<CRLF>

with XML config file entry:
<fieldmap fieldlist="calendar">
<automap indexasname="true" />

</fieldmap>

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 17

—cC

The ,,SDK_textdb* sample is expecting indexasname="“true®, because the fieldmap names will
not be stored, so the ordering of the config file’s fieldmap determines the index assignment.
NOTE: Adding fields in-between or changing the ordering of fields will make the system in-
compatible to already existing TDB_*.txt files, when indexasname is true.

The data fields can be multiline, so carriage returns <CR> must be escaped using ,,\t*, linefeeds
<LF> must be escaped using ,,\n“. To allow this, also backslashes themselves must be escaped
(using ,,\\“). Double quotes and cttl characters must be escaped as well. For details see the string
conversion routines at ,,stringutil.cpp®, which is part of the SDK package.

There are two extensions to this syntax:

* BLOBs: For binary large object blocks the field contains only a reference to the BLOB i-
dentifier which will be read and written with ReadBlob/WriteBlob.
Syntax: aa;BLOBID=xyz where <xyz> is the name of the BLOB.

* Arrays: For array fields a syntax with index will be used
Syntax: aalindex]:bb

,»ReadNextltemAsKey“ and ,,ReadltemAsKey* are equivalent to ,,ReadNextItem*/ , Readltem®,
but they are using an appPointer <altemKey> instead of transferring the <altemData>. They
will be used instead by the SyncML engine, if ,,JTEM_AS_KEY:true“ is returned with Modu-
le_Capabilities and at least SDK 1.4.0 is used. These keys are completely opaque for the plugin
module. Their attached context must be read or written with the GetValue/SetValue callback
functions.

4.4.4 The “update” section

The ,,update section starts with ,,StartDataWrite* and ends with ,,EndDataWrite®. Read com-
mands (ReadItem / ReadBlob) can appeat here as well.

- StartDataWrite

- Insertltem *)
- InsertltemAsKey *)
- Finalizel.ocallD

- Updateltem *)
- UpdateltemAsKey *)
- Moveltem

- Deleteltem

- DeleteSyncSet

- WriteBlob)
- DeleteBlob o)
- EndDataWrite

) Needn’t to be implemented with ,,plugin_datastore:no® at Module_Capabilities

) Needn’t to be implemented with ,,plugin_datablob:no* at Module_Capabilities

HInsertltemAsKey* and ,,UpdateltemAsKey* ate equivalent to ,,Insertltem®/ ,,Updateltem®, but
they are using an KeyH <altemKey> instead of transferring the <altemData>.

They will be used instead by the SyncML engine, if ,JTEM_AS_KEY:true“ is returned with
Module_Capabilities and at least SDK 1.4.0 is used. These keys are completely opaque for the

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 18

plugin module. Their attached context must be read or written with the GetValue/SetValue call-
back functions.

NOTE: ,Moveltem® is prepared for handling hierarchical datastores. In the current version the
SyncML engine has not yet implemented this feature. Therefore this function will not yet be cal-
led. For current plugin implementations LOCERR_NOTIMP (20030) can be returned.

4.4.5 The “admin write” section

The ,,admin write* section allows to handle the map tables. Detailed description can be found at
,»sync_dbapih®. All routines of this section can be implemented with return code DB_Forbidden
= 403, if the admin tables will be handled by the SyncML engine itself.

- SaveAdminData
- InsertMapltem

- UpdateMapltem
- DeleteMapltem

These routines will be called only, if <plugin_datastoreadmin> is set to yes in the config.
Needn’t to be implemented with ,,plugin_datastoreadmin:no* at Module_Capabilities

NOTE: Some of the Synthesis SyncML (client) engines have the admin part built-in, so it can-
not be redirected to a plugin module for these cases.

4.4.6 The “general” section

Some general routines are part of this section:

- ThreadMayChangeNow
- WriteLogData

- Adaptltem *)

- DisposeObj)
- Displtems !

*) Is not yet implemented in the SyncML engine, so it will never be called.

Needn'’t to be implemented with ,,plugin_dataadapt:no* at Module_Capabilities
**) Not implemented for JNI and C#, because Java and C# run their own garbage collection
%) Will never be called by the SyncML engine; for debug purposes only.

As the name says, the thread may change after ,,ThreadMayChangeNow* (but it must not).
If this information is not needed for the plugin module, it can be implemented empty.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 19

4.4.7 The “close” section

The ,,close® section releases the data store. The plug-in must release here all allocated memory
for this datastore. All objects returned to the SyncML engine will be released with
,DisposeObyj’ prior this call.

- DeleteContext

No access to this context will be done after |, DeleteContext®.

4.5 Callback calls

The Synthesis SyncML engine supports a callback mechanism, which can be used at the plug-in
modules for writing comments to the log files. Logging will be done on module, session and da-
tastore level. The user should NEVER use ,,printf™ or ,,cout™ calls, as this kind of output is not
supported by all versions of the Synthesis SyncML server and will not be logged in an appropriate
way. The SDK_util file provides the DEBUG_Cuall and the DEBUG_DB call:

void DEBUG_Call(void* aCB, uIntlé debugFlags,
cAppCharP ident, cAppCharP routine,
cAppCharP text, ...),

void DEBUG DB (void* aCB,
cAppCharP ident, cAppCharP routine,
cAppCharP text, ...);

DEBUG_DB is a DEBUG_Cuall with <debugFlags> = DBG_PLUGIN_DB

The <aCB> variable will be passed with the creation of each context (and must be stored within
the context object for subsequent use). The SyncML engine will write the text to the context
assigned log file. For more details see descriptions at ,,sync_dbapih®.

Sometimes, very extensive logging is requested, which should not be visible in normal log files.
The SyncML engine supports a flag called <exotic>.

Calls of DEBUG_Exuotic_Call ot DEBUG_Exotic_DB will be shown only, if the global "exo-
tic" debug flag is set:

void DEBUG_Exotic_Call(void* aCB, uIntlé debugFlags,
cAppCharP ident, cAppCharP routine,
cAppCharP text, ...);

void DEBUG_Exotic DB (void* aCB,
cAppCharP ident, cAppCharP routine,
cAppCharP text, ...);

DEBUG_Exuotic_DB is a DEBUG_Exuotic_Call with <debugFlags> = DBG_PLUGIN_DB

The log file can be structured using logical blocks.
To add these structures, use DEBUG_Block / DEBUG_EndBlock as pairs. <aTag> identifies
such a pair.

void DEBUG_Block (void* aCB, cAppCharP aTag, cAppCharP aDesc,
cAppCharP aAttrText),
void DEBUG_EndBlock(void* aCB, cAppCharP aTag)

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 20

The end of a thread can be signalled with. This information helps to create more structured logs.

void DEBUG_EndThread(void* aCB);

NOTE: The underlying debug callback calls are using cb->callbackRef as first parameter, not
<aCB> directly. If you are using these calls directly (e.g. on language platforms where SDK_util
is not available), please be aware that debug callback calls and UI callin calls are treated differently
concerning this first parameter.

4.6 The global context

There are two main reasons to have a global context: Either 1) for some reasons no global vari-
ables are allowed within the plugin module or 2) there is a need to share some variables between
different plugin modules.

For both cases the SyncML engine provides a mechanism to get such a global context without
the need of global variables. A structure ,,GlobContext™ (defined at ,,sysync_dbapidef.h*) will be
provided at ,,Module_CreateContext™ thru mCB->gContext.

/*! Structure of GlobContext */
struct GlobContext {

void#* ref; /* reference field */

struct GlobContext* next; /* reference to the next GlobContext structure */

uInt32 cnt; /* link count */

char refName[80]; /* the reference's name, length restricted */
}i

<refName> which is initially empty can be assigned any specific name of this context and <ref>
should point to the desired global structure. The <cnt> must be incremented by 1.
The <next> field needn’t to be handled, this will be done by the SyncML engine.

mCB->gContext actually points to a linked list of GlobContext, where <next> points to next
element, as long as not NULL.

In subsequent calls of ,,Module_CreateContext® it can be searched for the specific name at this
linked list. If available, <ref> is the desired reference. Don’t forget to increment <cnt> for each
assigned reference.

Each module context with such a reference must decrement <cnt> at ,, Module_DeleteContext*
again. When <cnt> reaches 0, the reference structure should be deleted, then <ref> set to NULL
and <refName> to ,,“. The SyncML engine will automatically remove such empty elements.

Each plugin module can use up to 3 such GlobContexts with a different <refName>.
The function ,,GlobContextFound* can be used to search/assign such a GlobContext.

An example for a global structure which will be used by different plugin modules is a reference to

a virtual machine which only exists once per system. The Java Bridge ,,JNI* is built with such a
reference to the JavaVM.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 21

4.7 The OceanBlue / SnowWhite adapter

For C++ an example implementation with a base class (,,OceanBlue®) and a derived class
(onowWhite®) is part of the package. ,,OceanBlue* contains all interface function as virtual
methods which can be overriden by the ,,SnowWhite* classes. The given example implements
version and capablity feedback for the module level, login for the session level and the data hand-
ling methods readnext/read/insert/update/delete with some example code.

The intension is that ,,OceanBlue must not be changed, all adaptions will be done at the
,onowWhite® module. Here is a step-by-step tutorial how to create your own database adapter.

1) Make a copy of ,,snowwhite.h* and ,,snowwhite.cpp* for creating your own database adapter.

2) Adapt the name ,,snowwhite® at ,,myadapter.h* to your own plugin’s name. The snowwhite
sources do not contain ,,SnowWhite® directly, they use MyAdapter.

3) Adapt the build number 0..255 to return it at the Version method. The build number is a
part of the version number which is completely user defined. The rest of the version number
must not be changed, as it will be used for upwards/downwards compability checks of the
engine.

4) Change the name and description at the Capabilities method

5) The SnowWhite adapter is using <asKey> methods for ReadNext / Read / Insert and Up-
date, and for Delete. The example shows in a simple way how to do this operations with sta-
tic elements. Replace them by your real database access.

6) Adapt the Login for different users. The SnowWhite login example just expects username=
super and password=user (MD5 encoded) and returns the <sUserKey> = ,5678. If you’re
using the database adapter for the client side with only one user, you can implement it as
dummy. Please note thate CreateContext is currently checking the returned <sUsrKey>

7) For the client engine you don’t need an admin data implementation.
For the server side, you can either
* configure an ODBC implementation
* use the INTERNAL_ADMIN implementation (using textdb way of using it)
* implement your own admin part by overriding the virtual admin methods

8) For the BLOB implementation

* use the INTERNAL_BLOB implementation (using textdb way of using it)

* implement your own BLOB part by overriding the virtual BLOB methods
NOTE: Suspend/Resume is using the BLOB implementation for partial items, so running the
datastore with OMA DS 1.2 requires a BLOB implementation.

9) Optionally implement now other things you need like filter support, e.g. for date ranges.

10) The SDK contains a lot of utiltly functions (SDK_util / SDK_support) which can be used
by the database adapter.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 22

5. SySync UlApi SDK description

The SySync UIApi provides core SyncML functionality in form of a library (.dll, .so, .dlib etc.
depending on the platform) to create SyncML applications not only with custom specific Ul
but also custom specific SyncML communication layers. This is because network communi-
cation is, especially on mobile devices, tightly coupled with the UI (asking user for network to
use, connection to establish, certificates to accept or deny etc.). In addition, modern operating
systems all provide built-in support libraries for common communication layers like HTTP or
OBEX which match platform specifics optimally.

5.1 Connecting the SyncML core library via UlApi

The UI Api interface is based on an interface structure with several methods in it.

So as the first step, the UI application must get this UI_Call_In interface structure <aCI> and
the engine’s version number <aEngVersion> from the SyncML engine. There is a unified functi-

on call ,,ConnectEngine*:

ENGINE_ENTRY TSyError ConnectEngine (UI_Call In *aCI,

CVersion *aEngVersion,
CVersion aPrgVersion,
ulntlé aDebugFlags) ENTRY ATTR;

NOTE: For C# ,,ConnectEngineS*“ must be used instead. That’s beause the interface structure
must be allocated within the managed environment. <aCallbackVersion> is the current version
of this structure, as it might increase for future versions. It is allowed to use ,,ConnectEngineS*
(as replacement for ,,ConnectEngine®) also in the C/C++ environment.

ENGINE_ENTRY TSyError ConnectEngineS(UI_Call In acCI,

ulntlé6 aCallbackVersion,
CVersion *aEngVersion,

CVersion aPrgVersion,

ulntlé aDebugFlags) ENTRY_ ATTR;

The UI_Call_In structure allows now to access to all the Ul application functions (through its
function pointer members). The UI_Call_In interface structure is based on the same
SDK_Interface_Structure (defined at sync_dbapidef.h), which is also used by the DBApi SDK.
The DBApi and UIApi share some of the functions — for example the DB_DebugXXXX functi-
ons can be called in both APIs for creating log file entries. Likewise, the GetValueXXX and
SetValueXXX routines are available in both APIs.

For C++, there is a wrapper class named TEngineModuleBridge is provided as part of the SDK
to facilitate access; likewise, for Botland/Codegear Delphi a similar Delphi wrapper class
(Delphi\sdk_sources_delphi\sysync_engine.pas) in Pascal exists.

The engine version can be used for compatibility check or action. The engine itself makes some
checks for compatibility with <aPrgVersion> versus <aEngVersion>, so is strongly recommen-
ded to take ,,Plugin_Version(<buildNumber>)*“ as <aEngVersion> or the version definitions
of Java or C#.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 23

The UI Api contains 3 sections:
* Engine Init

* Running Sync Sessions

* Settings Access

For detailed information see method descriptions in ,,enginemodulebase.h®

The UI application must disconnect the engine at the end to make sure that all settings are stored
correctly:

/* Entry point for disconnecting the engine at the end */
ENGINE_ENTRY TSyError DisconnectEngine(UI_Call_In aCB) ENTRY_ATTR;

5.2 Using a SyncML Client Library via UlApi

The following paragraphs describe the basic steps to take to create a SyncML client application.
Details may differ depending on your actual setup.

Please also refer to the fully functional sample clients provided as part of the SDK: SyncML
clients for Mozilla Sunbird/Lightning as GUI applications for Windows (in Codegear Delphi
Pascal), MacOSX (in XCode Cocoa/Objective C) and the sample Contacts sync application for
iOS.

Note that the SDK provides some glue code for the different platforms to simplify initialization
and usage of the SyncML Client Library UIApi, and hide the binary API which is based on a C
struct (UI_Call_In) containing function pointers.

For example, the iOS SDK contains Cocoa wrapper classes in the "XCode/sdk_sources_cocoa"
directory, or the Windows SDK contains a Delphi wrapper class in
"DELPHI/sdk_sources_delphi". For generic C++ access, the enginemodulebridge class in the
"Sources" directory provides the UIApi as a C++ class.

These wrappers usually hide or abstract the ConnectEngine call described in 5.1 in a object, so
connecting the engine consists of creating the object and passing the library path as a parameter.
Please see the sample applications for details.

5.2.1 Preparation for initialisation

First, the engine library must be connected as described in 5.1.

Then, before actually initializing the engine with a XML configuration file, some preparations
might be needed. The Synthesis SyncML engine version 3.1 and later support so-called "config
variables", which can be used to embed dynamic data from the runtime environment in a config
file. For example, command line arguments can be used to define path specifications in the con-
tig file (debug logs, data files...) without actually modifying the config file.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 24

Assume the config file contains a debug log directory specification as follows:

<debug>
<logpath>$ (mylogpath) </logpath>

</debug>

To make this work, the config variable "mylogpath" must be defined before actually reading the
XML config (see SySync_config reference.pdf chapter "Configuration variables and conditional
configuration"). In C, this will look as follows:

// Assume that UI Call In *calllInP contains the call-in structure
// as returned by ConnectEngine ()

TSyError sta;

// open the settings key that provides access to config variables
KeyH keyH = NULL; // will receive the opened key's handle
sta = callInP->OpenKeyByPath(callInP, &keyH, NULL, "/configvars",O0);

if (sta==LOCERR_OK) {
// config variable settings key opened successfully
// - define text mode
callInP->SetTextMode (callInP, keyH, CHS UTF8, LEM CSTR, false);
// - set the config variable's value
callInP->SetValue (
callInP,
keyH,
"mylogpath",
VALTYPE TEXT,
"C:\\syncml\\logfiles", // the config var value to set
-1 // automatically calculate length from null-terminated string
) ;
// done with config variables, close settings key
callInP->CloseKey (callInP, keyH) ;
keyH=NULL;

When all config variables are defined, the engine can be initialized.

5.2.2 Engine Init

As the next step, the configuration must be provided to the SyncML engine. This can be done on
three different ways. One of these ways must be chosen:

* the file name must be provided to the engine, so the engine can read the file directly (using
InitEngineFile).

* the whole configuration must be presented as one contiguous data block in memory (using
InitEngineXML).

* a callback for config reading must be given, so the engine can read it step by step (using
InitEngineCB).

The string mode can be chosen (using SetStringMode) prior to the engine initialisation, if de-
fault settings are not fitting, e.g. a charset which is not UTF-8

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 25

5.2.3 Acessing Settings

There are several SyncML engine settings which can be configured from the Ul application side.
The settings are embedded within a tree, comparable to a directory or Windows registry tree.
Setting values have therefore a path name, which must be opened first (with ,,OpenKeyBy-
Path®). Then values can be read (,,GetValue“ / ,,GetValueByID®) or written (,,SetValue®“ /
»SetValueByID). Multiple settings paths can be opened at the same time. ,,SetTextMode*
and ,,SetTimeMode*“ can be defined for each context.

The UI Application interface does not provide any undo functionality, so changes will usually
take effect immediately (or after calling ,,CloseKey®). If undo is required, the UI application itself
must provide this functionality.

An example program ,,UI_app_example.cpp® shows how these settings can be read and written
and a simple sync session can be run. A list of common path and key names supported for the
SyncML client engine can be found in 9.3. Depending on the version, special functionality and
platform of the client library the available path and key names might be different from the stan-
dard set in 9.3 — please refer to separate manuals for specific products.

Examples for key paths are: -,/ profiles*
M < (13
- ,,/engineinfo
Examples for ,,/profile” sub entries are: - ,serverURI*
- ,,serverPassword®
Example for ,,/engineinfo* entries is: - ,,version

The policy should be to close keys immediately after use, this will avoid consistency and locking
problems in some cases. Some values will be stored persistently, others must be set up each time
the Ul application is starting.

5.2.3.1 Preparations before accessing settings profiles

At least one client settings profile should be present after initialisation. So it is recommended to
check for an existing profile at startup of a client application and create a profile if none already
exists. The following code sample shows the steps:

// Still assume that UI Call In *calllInP contains the call-in structure
// as returned by ConnectEngine ()

// access settings to make sure a profile exists

KeyH profilesKeyH=NULL, profileKeyH=NULL;

// - open the profiles container

sta = callInP->OpenKeyByPath(callInP, &profilesKeyH,NULL,"/profiles",0);
if (sta==LOCERR OK) ({

// - first check settings status. This returns an error code if

// configuration data was found, but is not compatible with current
// version of the engine. If so, the "overwrite" flag must be

// explicitly set to force overwriting the old config with a new,

// empty copy.

short settingsstatus;
memSize sz;

sta = callInP->GetValue (

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 26

calllInP,
profilesKeyH,
"settingsstatus",
VALTYPE INT16, // we want the value as 16-bit integer
(appPointer) &settingsstatus, // put value here
sizeof (settingsstatus), // size of variable
&sz
)i
if (sta!=LOCERR _OK || settingsstatus==LOCERR_ CFGPARSE) {
// problem with current config.
// We could ask user here to preserve old config and
// exit the application. For now, we just force
// creation of a new config
// - set "overwrite" flag to force creation of new config
uInt8 overwrite=1;
sta = callInP->SetValue (
calllInP,
profilesKeyH,
"overwrite",
VALTYPE_INT8,
&overwrite, // the config var value to set
sizeof (overwrite) // size
)i
// - now check status again (will create new settings in the engine)
sta = callInP->GetValue (
calllInP,
profilesKeyH,
"settingsstatus",
VALTYPE INT16, // we want the value as 16-bit integer
(appPointer) &settingsstatus, // put value here
sizeof (settingsstatus), // size of variable
&sz
)i
}
// see if at least one profile exists - if not, create default profile
sta = callInP->OpenSubkey (
callInP, &profileKeyH, profilesKeyH, KEYVAL ID FIRST, O
)i
if (sta==DB_NoContent) {
// no profile exists, create default profile now
sta = callInP->OpenSubkey (
callInP, &profileKeyH, profilesKeyH, KEYVAL ID NEW DEFAULT, O
)i
if (sta!=LOCERR OK) ({
// Error, cannot create settings
// You could show an user alert here
exit(l); // terminate

}
if (sta==LOCERR_OK && profileKeyH!=NULL) {

// profile exists now

callInP->CloseKey (calllInP,profileKeyH); // close for now
}

// done with profiles for now
callInP->CloseKey (callInP,profilesKeyH) ;

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Ziirich, Switzetland - www.synthesis.ch

Page 27

5.2.3.2 Editing Settings

To provide editing of client settings, the applications must open the "/profiles" key as show abo-
ve, then open one of the contained profiles. This profile contains some session-level configurati-
on like Server URL, username, password. As a session can Zarger more than a single datastore for
synchronisation, each profile contains a "targets" container which in turn contains a key for each
datastore the client supports. To identify the targets, the XML configuration file must include a
numeric identifier in the <dbtypeid> tag in each <datastore> section (see

SySync_config reference.pdf). Within the "targets" key, this identifier can be used to open the
individual targets by id using OpenSubkey().

So the settings hierarchy for SyncML clients is as follows (details see 9.3):

* "/profiles" is the container of all client settings profiles. At least one profile is required,
multiple profiles can be used to maintain settings for synchronizing with more than one
SyncML server.

* "/profiles" contains the special "settingstatus" and "overwrite" values used to check
"health" of cutrent settings, as described in 5.2.3.1.

* Profiles within "/profiles" must be opened by using OpenSubkey(), usually by iterating
over available profiles using the special KEYVAL_ID_FIRST and KEYVAL_ID_NEXT
values as id.

o Each profile contains a number of session level settings values, like "serverURI",
"serverUset" etc. - these are accessed using GetValueXXX and SetValueXXX
routines.

o Each profile contains a "targets" container key which can be opened by
OpenKeyByPath().

* "targets" contains a target key for each datastore supported by the
SyncML client engine (that is, those defined in the XML configuration).
= Fach target must be opened using OpenSubKey(), using the numeric
identifier specified with <dbtypeid> in the XML config for each
datastore. It is also possible to iterate over all targets using the special
KEYVAL_ID_FIRST and KEYVAL_ID_NEXT values as id.
* FEach target contains a number of datastore level settings values,
like "syncmode", "remotepath” etc. - these are accessed using
GetValueXXX and SetValueXXX routines.

When accessing these settings, make sure you don't close container keys as long as subkeys con-
tained are still open. So usually, keys are opened in the order "/profiles", profile, "targets", target
and closed in the reverse order. It is allowed to have multiple profiles or targets open at the same
time, as long as the parent key remains open as well.

5.2.4 Running Sync Sessions
Running a sync session consists of three basic steps:
® creating a sync session using OpenSession()
* calling SessionStep() repeatedly in a loop until it returns STEPCMD_DONE.

o The return value in aStepCmd (see "engine_defs.h" for SESSIONSTEP_xxx
definitions) must be checked to see when the engine has SyncML data ready to
send to the SyncML server or needs an answer from the SyncML server. If so, the
needed comminication with the server (http, OBEX) must take place using

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 28

GetSyncMLBuffer() /RetSyncMLBuffer() or
ReadSyncMLBuffer() / WriteSyncMLBuffer() routines to get or put SyncML data.
For Java applications, only Read/WriteSyncMLBuffer are available.

o To send data to the SyncML server, the application must query the SyncML
engine for the URL and content type to use by opening the session-local session
key using OpenSessionKey() and querying its "connectURI" and "contenttype"
values.

o0 The communication channel can be held open between calls to SessionStep()
until STEPCMD_RESTART is returned in aStepCmd.

o Each call to SessionStep() returns a record of TEngineProgressInfo type, which
indicates progress of the sync session. The information in this record is useful to
show progress in the UI of the application. See "engine_defs.h" for progress
event PEV_XXX definitions.

* closing the sync session using CloseSession()

The following C code skeleton shows the basic implementation required to run a sync session:

// Assume that UI Call In *callInP contains the call-in structure
// as returned by ConnectEngine ()

// run a sync session
// - variables
TEngineProgressInfo progressInfo;
SessionH sessionH = NULL;
TSyError sta;
uIntl6é stepCmd = STEPCMD CLIENTSTART; // first step
const memSize textbuffersize = 300;
memSize textsize;

char textbuffer[textbuffersize];
// - create a session
sta = callInP->OpenSession(callInP, &sessionH, 0, "mySyncSession");
if (sta!=LOCERR OK) ({

// error, exit

exit (1);
}

// sync main loop

do {
// take next step
sta = callInP->SessionStep(calllInP,sessionH, &stepCmd, &éprogressInfo) ;

if (sta!=LOCERR OK) ({
// error, terminate with error
stepCmd=STEPCMD ERROR;
}
else {
// step ran ok, evaluate step command
switch (stepCmd) {
case STEPCMD OK:
// no progress info, call step again
stepCmd = STEPCMD STEP;
break;
case STEPCMD PROGRESS:
// new progress info to show
// Check special case of interactive display alert
if (progressInfo.eventtype==PEV DISPLAY100) {
// alert 100 received from remote, message text is in
// SessionKey's "displayalert" field
KeyH sessionKeyH;
sta = callInP->OpenSessionKey(callInP,sessionH, &sessionKeyH,0);
if (sta==LOCERR_OK) ({
// get message from server to display
callInP->GetValue (

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 29

callInP,
sessionKeyH,
"displayalert",
VALTYPE TEXT, // we want the value as 16-bit integer
(appPointer) &textbuffer, // put value here
textbuffersize, // size of variable
&textsize
);
// tbd: display message to user
callInP->CloseKey(callInP, sessionH) ;

}
else {
// normal progress info
// tbd: show progress in the UI
}
stepCmd = STEPCMD STEP;
break;
case STEPCMD ERROR:
// error, terminate (should not happen, as status is
// already checked above)
break;
case STEPCMD RESTART:
// make sure connection is closed and will be re-opened for next request
// tbd: close communication channel if still open to make sure it is
// re-opened for the next request
stepCmd = STEPCMD STEP;
break;
case STEPCMD SENDDATA:
// send data to remote

// tbd: use OpenSessionKey () and GetValue() to retrieve "connectURI"

// and "contenttype" to be used to send data to the server

// tbd: use GetSyncMLBuffer () /RetSyncMLBuffer () to access the data to be
// sent or have it copied into caller's buffer using

// ReadSyncMLBuffer (), then send it to the server

// status for next step

if (true) /* tbd: check if communication with server successful */
stepCmd = STEPCMD SENTDATA; // we have sent the request data

else
stepCmd = STEPCMD TRANSPFAIL; // communication with server failed
break;

case STEPCMD NEEDDATA:
// tbd: wait for receiving answer from server

// tbd: put answer received into SyncML engine's buffer, either by
// directly accessing it using GetSyncMLBuffer () /RetSyncMLBuffer ()
// or by copying it with WriteSyncMLBuffer ().

// status for next step
if (true) /* tbd: check if communication with server successful */
stepCmd = STEPCMD GOTDATA; // we have received response data
else
stepCmd = STEPCMD TRANSPFAIL; // communication with server failed
break;
} // switch stepcmd
}
// check for suspend or abort, if so, modify step command for next step
if (false /* tdb: check if user requests suspending the session */) {
stepCmd = STEPCMD SUSPEND;
}
if (false /* tdb: check if user requests aborting the session */) {
stepCmd = STEPCMD ABORT;
}
// loop until session done or aborted with error
} while (stepCmd!=STEPCMD DONE && stepCmd!=STEPCMD ERROR) ;
// done, now close the SyncML session
sta = callInP->CloseSession(callInP, sessionH);

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Ziirich, Switzetland - www.synthesis.ch

Page 30

SessionStep() is designed to keep execution time as short as possible, such that implementing a
responsive SyncML client is possible without using a separate thread. The code skeleton above
can be integrated in a GUI application main loop to allow processing SyncML, showing progress
in the UI and responding to uset's requests (like pressing an abort button) in parallel.

NOTE: It’s recommend (on Windows systems) to initialize the network access before opening
the session for the first time. That’s because the <LLocURI> information will be taken from net-
work information, if available.

An example program, UI_app_example is part of the SDK package for most of the supported
platforms. It shows how to run a simple SyncML session. This example uses the open source
package CURL as network interface (which is not part of the SDK package). The include files
(curlh/easy.h) are for compiling, as well as libcut]l DLL at runtime.

For Android and for Windows Phone 8/8.1/10, an example program with a complete user
interface of the uiapp.java example is provided.

5.2.5 Example client app: ui_app_example

ui_app_example client example app is available as source file and as binary program
(32 bit and 64 bit for Linux).

The app is directly able to sync data as a client (using the built-in ,,SDK_textdb* adapter by de-
fault). This adapter can be used directly with provided engines sysync_client_engine DEMO or
sysync_client_engine (with —V). For the sysync_client_engine, a valid license is required.

Running the app will create a folder at /home/<user>/sysync/synthesis.ch/SySyncLib.

There a subfolder syncml_client_ SDK will be created with the synced data.

If you create a folder /home/<user>/sysync/synthesis.ch/SySyncLib/logs manually there,
log files will be created, with option —g also globallogs, with —e also additional information.

If this folder is removed (or renamed) again, no logs will be created anymore, and the SyncML
engine acts must faster.

Synthesis UI app example V2.2.0.0

Usage:
ui app example [<options>]
Options:
-h : display this help text
-v <engineName> : name of engine, default: 'sysync client engine DEMO'
-V : use alternative engine, : 'sysync client engine'
-d con,cal,tsk : name of DB plugin, default: '[SDK textdb]'
-D <session> : session plugin, default: '[SDK textdb]'
-0 : other plugin, default: '[SDK textdb]'
-i : index as name, active for '[SDK textdb]'
-f <configFile> : config file, default: 'Clieat_config.xml'
-s <serverURL> : server URL, default: 'http://www.synthesis.ch/fsync'
-S : use alternative server URL: 'http://www.synthesis.ch/fsync64’
-u <username> : server account's user name
-p <password> : server account's password

-t <licensetext>: engine's license text
-c <licensecode>: engine's license code

-% : activate debug flags

-x : use xml instead of wbxml
-1 : write to log file

-e : logs: exotic flag

-g : create global logs

-a : additional printf info

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 31

By default only the contacts datastore is activated. By changing the source file accordingly, also
other datastores can be used. The ,,SDK_textdb* data plugin can be replaced with your own plu-
gin by using option —d.

With the sysync_client_engine, also the JNI plugin for JAVA adapters can be used, within the
sysync_client_engine. DEMO engine, the JNI plugin is not available, and external plugins are
blocked.

Default config file is client_config.xml. This example file is the one which is in use by the
commercial Synthesis Android and Windows Phone client products in their current versions. The
config file will be first searched at /home/<user>/sysync/synthesis.ch/SySyncLib, then locally.

From SDK directory it can be called directly:

bin/linux/ui app example -u <usr> -p <pwd> (DEMO engine 32 bit)

bin/linux64/ui app example -u <usr> -p <pwd> 031334C)engﬁK364lﬁC

bin/linux64/ui_app example -u <usr> -p <pwd> (create globallogs and exotic info, if logs
directory exists)

(sysync_client_engine, 64 bit, with license info)

bin/linux64/ui app example -u <usr> -p <pwd> -V -t <lictext> -c <liccode>

NOTE: The ui_app_example app is using the indexAsName mode for the internal SDK_textdb
plugin, and the direct name mode for all other plugins. indexAsName can be activated for other
plugins by using option —i.

NOTE: Usually plugins are written for either <asName> or <asKey>. The SDK_textdb is writ-
ten for the <asName> mode. The SDK_javadb can handle both modes. Default is <asName>,
by provideing ,,asKey“ as <subName>, the example plugin switches accordingly.

NOTE (CURL): For UI_app_example, the curl package must be installed. Unfortunately some
of the curl versions aren’t compatible for 32 bit and 64 bit versions at the same time.

The problem is a wrongly defined LONG length constant at curlrules.h which shows this error:
/usr/include/curl/curlrules.h:142:3: error: size of array

' curl rule 01 ' is negative
__curl rule 01

That’s why the makefile for 32-bit is using a different path /ust/local/i386/include/cutl.

If you are using 32-bit only, either change this path at the makefile to /ust/include/curl, as defi-
ned in the 64 bit makefile. Or make a copy of the /ust/include/curl directory to
/usr/local/1386/include/ curl.

If you’re using both 32 and 64-bit, make the copy of the curl directory, as described and adapt
the LONG length to 4 in the 32-bit package and to 8 in the 64-bit package. For more informati-
on you’ll find several information in internet concerning this topic.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 32

6. Setup Guide

This setup guide consists of two main sections:

* Section 6.1 describes the installation of the C/C++ interface,
Section 6.3 describes the usage of the JNI interface for Java.
Section 6.3 describes the usage of the interface for C#.

* We recommend, that if you are new to Synthesis SyncML Server/Client, start testing with the
standalone version as you have immediate visible feedback on the console screen. If eve-
rything is working fine, then you can easily switch to the ISAPI or Apache version. For instal-
lation of the ISAPI or Apache version see the description of ,,SySync_Server_manual®.

6.1 Plug-in System for C/C++

Metrowerks CodeWarrior project files (.mcp) are part of the SDK delivery for Windows, as
well as the compiled shared libraries. The examples are based on CodeWarrior V8.2 for Win-
dows.

For Windows alternatively Visual Studio 2005 or newer can be used. Ready-to-use *.vcproj files
are part of the SDK package.

For Linux, makefiles ,,sysync_SDK_linux.mk* and ,,sysync_SDK_linux64.mk* are part of deli-
very. They can be used by calling ,,make*:

make —f sysync_SDK_linux.mk.
(and for 64 bit version) make —f sysync_SDK_linux64.mk

For MacOSX XCode can be used to create Universal Binaries which are working on PPC and
X86 architectures. For newer MacOSX versions, PPC is no longer available.

Three plug-in modules (a simple demo module in pure ,,C*, a text DB module in ,,C++“ and a
extendable C++ adapter ,,snowwhite®) can be compiled and linked directly. Result will be the
three shared library modules ,,SDK_demodb*, ,,SDK_textdb* and ,,snowwhite®.

3%

dil for Windows,
.80 for Linux,
.dylib for MacOSX

* Standard C example: The ,,SDK_demodb* is just printing a debug message for each rou-
tine. This can be a good and helpful starting point to implement routine by routine. Wri-
ting debug messages is done thru the callback mechanism of the SyncML engine, using
the ,,Debug_DB* call. The debug messages will be stored in the SyncML engine’s log fi-
les. Don’t use ,,printf™ calls, as not all versions of the Synthesis SyncML server are able to
create such kind of output.

* C++ example: The ,,SDK_textdb* is a text DB interface, which acts the same way as the
so called Synthesis SyncML demo server. This module can be a starting point when it’s
easier to adapt from an already running system. Plugin parameters <datafilepath>,
<blobfilepath> and <mapfilepath> are supported.

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 33

NOTE: The CurrentTime() function used at ,,Session_GetDBtime* and ,,StartDataRead* is
implemented very rudimentary. For a good implementation, this function should be
replaced by an enhanced version.

The example configuration ,,syncserv_odbc.xml® is set up to access the ,,SDK_textdb® directly
by default. <plugin_module> is configured for ,,SDK_textdb® on session and datastore level.
The admin tables of the ,SDK_textdb‘ will be used.

For Linux and MacOSX ,,LD_LIBRARY_PATH® must be set in order to access these plugin
library modules.

6.2 Plug-in System for iOS

The iOS apps do not allow the usage of Java nor of dynamically linked libraries. So the database
plugins must be statically linked with predefined names.
Additionally Cocoa does not support the C++ namespaces which are used for built-in plugins.

The solution which has been chosen are 4 predefined built-in bridge modules
"[iPhone_dbluginl]" .. "[iPhone_dblugin4|". They are connected via sam-
ple_dbpluginX_wrapper.mm to the Cocoa ,,sample_dbplugin® (h and .m). They can be chan-
ged to the user’s SDK Cocoa plugin module best by making a copy of sample_dbplugin as star-
ting point and implementing there the system specific readnext/read/insert/update and delete
functionality.

6.3 Plug-in System for Java

The Java Virtual Machine V1.4 or higher must be correctly installed.

For Linux and MacOSX ,,LD_LIBRARY_PATH® must be set to access the JavaVM, e.g. at
“/ust/java/jre/lib/i386/client” ot ,,/ust/java/jre/lib/i386/server .

For MacOSX this is normally ,,/system/Library/Frameworks/JavaVM.framework®. By default
it’s searching for libjvm.dylib. For SDK 1.9.0 and higher it also searches for JavaVM.dylib.

For Android everything in Java is set up with the ,,uiapp‘ sample as eclipse project. At least
Android SDK 1.6 is requested to run correctly with the NDK library , libsynthesis_client.so*
Synthesis recommends to compile with Android 2.0, but allow Android 1.5 as min version.

There is a Java example ,,SDK_javadb.java“ and its compiled classes (which have been created
with ,,javac SDK_javadb.java®).

The SDK class is within a Java package: A package example (named com.sysync) can be found
in the according subdirectory. A package can be accessed by adding the package path or by ad-
ding the package name, separated by a space. JavaVM options can be added after the class and
package name.

Examples: [JNI]!/com/sysync/SDK_javadb (using com.sysync package)
NI)!ISDK_javadb com/sysync (alternative syntax)
[UNI]!/com/sysync/SDK_javadb —verbose:jni (with additional options)
[logget!INI]!/com/sysync/SDK_javadb (using additional logger)
UNI]!/com/sysync/SDK_javadb —Xrs (*C will not be disabled)

UNI]!/com/sysync/SDK_javadb -Djava.class.path=/xxx (with a different classpath)
UNI]!/com/sysync/SDK_javadb -Djava.class.path=a.jar:b.jar (using one ore more jar files)

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 34

The SyncML engine (version only) has a built-in plug-in module for the JNI handling.

In earlier SDK versions, Java sources outside any package and within ,,sysync® package have
been provided. The entry points are still valid, also for the 32-bit interface (for contexts, pointers
and sizes), but it is recommended to switch over to the com.sysync package version with the 64
bit interface.

For UI applications, written in Java, the engine connection will be done with the
,»Oysync_ConnectEngine® call, which then provides access to all the Ul application specific func-
tions. A simple sample program how to use the interface is part of the SDK: uiapp_main.java.
NOTE: For some systems the architecture must be defined with —d32 or —d64

Examples: java —cp . com.sysync.uiapp_main
java —d64 —cp . com/sysync/uiapp_main

6.3.1 Android setup

* Android’s SDK 3.1.X (API version 12) or higer is recommended, which supports all
Android 1.5 — 8.0 OS versions, min version 1.5 =API version 3 is possible).

* Eclipse or Android Studio must be installed.

* The uiapp example project can be directly installed as Android app (browse for the path
where the AndroidManifest.xml is located).

* The library project ,,ui_app_example* must be installed as a 2nd project

* A valid license code (temporary or permanent) is required, the existing
»res/raw/license.txt® file must be replaced (1st line license text, 2nd line license code).

uiapp Abbrechen Speichern

: : | Synchronisation starten Sync-Modus

<ready> Normal Sync

Server URL Server-Pfad

http://172.16.18.1:8052 usrl

Server Login
Username example arrow

super

example edit
Passwort

contacts
@ Normal Sync (2]

events

© SDK manual V2.2.0 / 2004-2018 by Synthesis AG, Zurich, Switzetland - www.synthesis.ch

Page 35

The uiapp example is able to run a complete SyncML session, the example datastores are howe-
ver only rudimentary and must be completed.

The uiapp example has 5 example plugins, ds_example and ds_usr1..ds_usr4 (with its settings
modules). ds_example is connected to ,,contacts” and ,,events®, the 4 usr-plugins are connected
to a ,,notes datastore. Each of these 4 ust-plugins can be extended for the uset’s needs, the con-
tig file must be adapted accordingly of course. The example plugins are reducing the user’s work
mainly to implement the read/update and delete routines and ist parameter setup for each plugin.

6.4 Plug-in System for C#

Will be accessed via GUID. There is a common GUID for the interface (which shouldn’t be
changed and a class specific GUID. The class specific GUID will be expected as subname at the
config file. GUIDs must be registered to the system using ,,regasm*.

regasm dbapi_csharp.dll /tlb: dbapi_cshatp.tlb

Example:
<plugin_module>CSHARP!348330a6-c7ee-4ba4-888b-39250cb31db1"</plugin_module>

6.4.1 Windows Phone 8/ 8.1/ 10 setup

* Visual Studio (Express) 2012 or higher must be installed.

* The uiapp example project can be directly installed as Windows Phone 8 app (browse for
the path where the uiapp.sln is located).

* A valid license code (temporary or permanent) is required, the existing dummy license
must must be replaced (at main_util.cs)

* The sample app can run in the emulator or on a Windows Phone 8 device

* Debug and release modes are supported

There for sample datastores prepared: ds_usrl .. ds_usr4. They can be directly used to sync a

notes datastore. A config file is prepared to support also contacts, events, tasks, sms, documents,
and bookmarks.

As the Windows Phone 8 SDK is not based on the regasm/GUID mechanism, the app can be
installed and started directly w/o installation via regasm.

For Windows Phone 8 SDK, a class pair (e.g. ds_ust1/usrl_entry) must be extended to your
needs. The ds_ustl.cs contains the ReadNext/Read/Update and Delete