' Sustainable
' Software Concepts

l
|
l
\
l
|
l

\

i D VA

www.synthesis.ch

XML Configuration Reference for
Synthesis SyncML
Server & Client 3.4 Products

© 2002-2009 by Synthesis AG

Page 2

This manual was written for Synthesis SyncML Engine Version 3.4.0.0

This manual and the Synthesis SyncML software (Server or Client) described in it are copy-
righted, with all rights reserved. This manual and the Synthesis SyncML software may not be
copied, except as otherwise provided in your software license or as expressly permitted in writing
by Synthesis AG (http://www.synthesis.ch/).

Synthesis SyncML products uses parts of the following software:

expat - XML parser - http://sourceforge.net/projects/expat
Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

SyncML toolkit - http://sourceforge.net/projects/syncml-ctoolkit/

This product includes softwate developed by The SyncML Initiative.
Copyright (c) 2000 Ericsson, IBM, Lotus, Matsushita Communications Industrial Co., LTD, Mo-
torola, Nokia, Palm, Inc., Psion, Starfish Software. All rights reserved.

zlib compression library - http://www.zlib.net/

zlib softwate copytright © 1995-2004 Jean-loup Gailly and Mark Adler

SQLite 3 database engine - http://www.sqlite.org/

PCRE Library - http://www.pcre.org/license.txt

Copyright (c) 1997-2007 University of Cambridge

Disclaimer

Use of the Synthesis SyncML software and other software accompanying your license (the "Soft-
ware') and its documentation is at your sole risk. The Software and its documentation (including
this manual), and software maintainance by Synthesis AG, if applicable, are provided "AS IS" and
without warranty of any kind and Synthesis AG EXPRESSLY DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT. IN NO EVENT SHALL
SYNTHESIS AG BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

http://www.synthesis.ch/
http://sourceforge.net/projects/expat
http://sourceforge.net/projects/syncml-ctoolkit/
http://www.zlib.net/
http://www.sqlite.org/
http://www.pcre.org/license.txt

Page 3

1. Introduction

All Synthesis AG SyncML products, clients as well as servers are based on our platform inde-
pendent SyncML engine. This engine is configured using a single XML config file, which makes
replicating or migration of client and server installations very simple.

If you already have worked with a previous version of the Synthesis SyncML engine con-
figuration, please refer to the (new) chapter "What's New?'" on page 12 of this manual.
Please also consult the product-specific manuals (like Server Manual, Client Manual etc.)
for product specific news and step-by-step migration guides.

As both clients and servers share the same core engine, large sections of the configuration is
equal or similar in server und clients, different platforms and versions.

Therefore, this configuration reference covers all Synthesis SyncML products that are user-
configurable with an XML configuration document. This includes all servers, command-line
desktop clients and most versions of the Synthesis SyncML client engine that can be used to
build custom clients with the client SDK.

Only ready-to use, device specific versions such as the PalmOS and Windows Mobile clients have
no XML configuration).

In the description of a configuration option, the products for which the option is available is
listed under the "Available" header line if it does not apply to all versions.

Please note also that this document is a reference manual. It is useful to get an overview of the
entire functionality available and of course to create and adapt configuration files. However, it is
not a guide for creating new configurations from scratch. We recommend to always use one of
the tested and commented sample configuration files included in the product distributions as a
starting point.

Note that this manual makes heavy use of cross references (references to related parts in
the manual) - which are active links if this manual is viewed as a PDF document. You
can just click on any of the cross-referenced chapter numbers to have the PDF viewer
show the corresponding page of the manual. Using the ""back" button in the PDF viewer,
you can always jump back to the original page.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 4

Contents

1. INtroducCtioncciiiiiiccceeeeseaaaansannssnssnsnssssssssssaaanannnnnnnnnnnnnnnnnnnnsnnnnnnn 3
contents lll4

P20) 4 T 1 o T e

2.1 New in this Manual........ciiiiieuuiiiiiiiiiiiiiminiiiciiisssieeessasssssssssssssssssssssssss 12
2.2 New in SyncML Engine 3.2 and newer compared t0 3.0.....cccccuveervrrrieeniinnneennnnnee. 12
2.2.1 General ChanGEsccciiviiiiiiiiiiii s 12
2.2.2 NEW FATULES .ttt ettt sttt sttt et bt s b st et et e besbesbe b enebesbenaenteneas 13
2.2.3 How to migrate from 3.0 to 3.2 or newer (UP tO 3.4)...cccccceuiiiiiiininnnnrrnncccee 14

B T o AT T T T ly
3.1 BasiC CONCEPLS...uuurireeiiiiiiiinnniiieeeiiiiiiiiiiiieeeeeieiiatsstteeeessesssssssssseesessssssssssssssssssssses 17
3.2 Configuration SIUCTULE ..ccciiiiriuniereeiiiiiiiiiiieeeeeneirreee e cssssssssseeeeeessssssssssssessseans 17
3.3 XML DASICS tuuereeunnnerreenensereenssssrernnssessesnsssssesssssssssnsssesssssssssssssssssssssasssssssnsssssssnsssssssnasss 19
3.4 Synthesis Sync Server Config specific XML USagecccovuurrriiiinrreiisinnneeicninneennnnnns 19
4. Configuration variables and conditional configuration..........cceeeee 21
4.1 Sources for values of config variable.........cuuuieeiiiiiiiiiiiiiiiniiiieiiiieereeee, 21
4.2 Using configuration variables.........coiviiiiiiiiiiiiiiiiiicteectt e, 21
4.3 "expand" attribULe....uiiiiiiiiiiiiiiiii e 22
4.4 Predefined Configuration Variablescceiiiiiiiiiiiiieiiiiiiininineeeiiinninieeeeennnnnnn, 22
4.5 "ifdef/ifndef/if" conditioNal AttEIDULES ...ceveeeeeerreeenerreiiireeeerreeeeeeseeseeeeeeeesssssssssssssseees 23
4.6 "platform' conditional attributeccceeevvueeiiiiiiiiiiiiiiiiiiirr 23
5. Time zone handling...ccceceemsssmssssnsssssssssnssnssssnssnsnssnsnsnnsnnnnsnnnnsnnsnnnnnns 24
5.1 Timestamp rePreSeNtationueciueeeiiiiireeeiiiiureensiiseeeensssneeesssssesessssseeesssssessssssssesses 24
5.2 TiMEZONE CONTEXLS cerrrrrrrrrrririiririttitiiiiitiiitiittttttietitttetterettetesssmsmsssssssssssssssssssssssssssssssss 24
5.3 Time Zone SPeCifiCAtiONSceviiriuriiiiiiiiiiiiiiiiieiiireeiire s sss e essaseeeees 26
6. Scripting LanguUage...cccecrsmrmssmnsssssnsssssnsssnsnssnsnsnnsnnnnsnnsnsnnsnnnnsnnnnnnnnns f
6.1 What can be SCIIPLEd?cciuuiiiiiiiiiiiiiiiiieiiiieeccire et cesee e sase e s s ssaneeses 27
6.2 Embedding script source code in XMLccoouviiiiiiiiiiiiiiiiinnnnieieininnnneeeecennnne. 27
(T I 0703 510 o 1< 4 X 28
6.4 Statements and Statement BIOCKSceeeeeeeeeeeeeeeeeeeiiiiieiiiiiiiiiiieiiiiiiiiiieeeeee 28
6.5 LAENtIfIErS .. ceeeiiiiiieuneeniiiiiriiiiirnueeniiaesssttessssnnssssssssssssesssnsssssssssssssssssnnssssssssssssssssnnssssssses 28
6.6 DAta tYPES cocuunrrriiiiiiiiiiiiitiiieeecccree e e e s a s s s s s e e e s e s s snanee 28
6.7 CONSLANTS /LLItEIALS ceuurrrrnrirerrireeriereneeeesieeessereeseesssesesseesssesesssessssesssssessssessssssssssssssnsens 28
0.8 SCIIPt COMEXLS uurrrriiiiiurreiiiiiieeeiiitreeiiiteeeeittreeeestreeeesssaeesesssnessssssssessssssssssssssassenes 29
O S a1 o) (TP 29
6.9.1 CONLEXE VALIADIES ..ttt ettt ettt et e se e se e esens 30
6.9.2 Local variables of a user-defined fUNCHONccveveireeiririerieeeeee e 30
0.9.3 FIeld VALIADIES ...cuvveveieiiiiiicieiei ettt ettt et 30
0.9.4 Array variable 1efErENCES. ...ocoiiiiiiiiiiieieieieieerr et 31
6.10 EXPIESSIONS ..ueeeeeeeiiiiiiiiiiiiiieeiiiiiiiiiiieeeeiiiiiiitsieeeeessssssssssssseesesssssssssssssessssssssssssnes 32
6.11 FIOW CONLIOL.cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieiiieieeieeeeeeseesisses 32
6,12 IMIACTOS 1urirnnnniriirnniiriiraniisritenssstssssssessesssssssssssssssssssssessessssssssssassessesssssssssnsssssssnssssssasss 33
0.12.1 DefINIng MACLOS.....cucviiieiiiiiiiieiciiietc ettt 33
0.12.2 MALCO ArGUMIEILS ..vuiiiiiiiciiiii bbbt 34
0.12.3 USING MACTOS...ciiiiiiiiiiiiiiiciiiiicc bbb 34
6.13 FUNCLIONS ceuutiiiiiniiiiiiiniietiiteiintieneiertesesesttsusssstsssssssssssssssssesssssssssnsssessesnsssssesnasssssasas 35
6.13.1 User defined FUNCHONS ...c.cutiriririeieiiiiririeieeentssiee ettt ettt ettt 35
6.13.2 Built-In FUNCHONS veutveiiieiiieiiieie ettt ettt sneese e esans 36
6.14 Global built-in Function Referenceccovviiiiivunuiiiiiiiiiiiiiimuiniiiinniiiieen. 36

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

0.14.1 String fUNCHONS ...viiiiiiiicccce e 37
0.14.2 Regular EXpression fUNCHOMNScccceuiuiuiieiiiiiiiiiiiiiniiicicccisieesese e 38
0.14.3 Date and TImMe fUNCHONS ...cvuivivviieiiiiiiicieiiceec s 38
0.14.4 Time zone related fUNCHONScovcviiiiiiciic s 41
0.14.5 Debug 1og fUNCHONS ...t 42
0.14.6 Other fUNCHONSvviiiiiiiiiccccccee et 43
6.15 Debug@ing SCIIPLS .ccevieiirriurrieiiiiiiiiiiitieieeeeeieniittieeeeeeeeeesataseeeesseesssssssseessssssssssnnes 45
7. Filters s ns s e ns s s s e s n s s e n e s nnn s nnsnnnnnnsnnsnnsnnnsnnsnnsnnn & 7
7.1 Test and Make-Pass MOAESccovurrriiiirriiiiiiiieiiiiiinieiiiieeciieecenneecessseesssseeens 48
7.2 BasicC filter SYNtaAX..ciciiiiiiiiireeeeeiiiiiiiitiiteeteieeeeittteeeeeseeseesatateeeeseessssssasaessessssssssnnnes 48
7.3 Identifiers in filters....uuueiiiiiieiiiiiiieiiiiieectieecceeecre e 49
A O € B Sl 1)4 L 50
7.5 Special options in CGI filters passed with database path...........cccceeevvnnnnnneeeeiiinnnnn. 51
7.6 Filters in the cONfigurationcocuiiiiiiiiiiiie e, 52
8. General Global Configuration Options........cccccesiiisssssmsesssssnnmseenen s 53
8.1 <licensename>, <licensecode>: LiCENSE ...ccccrerrrurirrurirreuierreeerenceereneereneeseaneesanessnnnes 53
8.2 <maxconcurrentsessions>: concurrent sessions lmit........ccccuveeeerieeiiininnneeeeeniennnnn, 53
8.3 <maxmsgsize>: max SyncML message SizZe.......cccvverrrrrreiiiinrreeiiinnnieeniinineennnnnneen. 53
8.4 <maxobjsize>: Maximum ODJECE SIZE ..cccviie 54
8.5 <configidstring>: text to identify config......cccovuurrreeiiiiiiniiiiiiiiiniiiiiiiiiieeicccnnnee, 54
8.6 <manufacturer>: text to identify product manufacturer.......ccceeeevrvreeeinnenernninnnnnnn. 54
8.7 <model>: text to identify model/product Name........ccceevueevuriirueiniiniiiniinneinieenneens 54
8.8 <configvar>: define configuration variable.........ccccccvevvrnirririiiiiiiiiinnnneeeeiiiininnnnnnne. 55
8.9 <configmsg>: define configuration variable.........ccccceevvunrrriiieiiiiiiiiinnneeeeeiiiinnnnnnnnn. 55
8.10 <scripting>: Global scripting definitionscceceeeeeriireeiiiiieeeniiiieeniiireecnneneeenn. 55
8.10.1 <function>: User-defined funCtioncccccoeuvieiiirininininiiiciccecee s 55
8.10.2 <macro>: defiNe MACIOcciuiuiuiiiiiiiiiiicieic e sanas 56
8.10.3 <looptimeout>: maximum loOp €XECUtION tME.......cvururuririiiriiiiceieieieeeereneeseeeeseeas 56
8.11 <debug>: Debug Option SECtiONeeeieriiieeiiiiiieiiiiiieeirireceeeeneeeeesaaaeeees 56
8.11.1 <logpath>: Directory path for debug log files........cccccvviiiiiiniiiiiniiiiinicinicciaes 57
8.11.2 <enable™, <AISADIE ™ccoioiiieeeeeeeeeeeeeeee ettt ettt ettt et ettt et nnas 57
8.11.3 <logformat>: select log file fOrmat.........cccucviiieiiiiiiiiiiiiiiii e 59
8.11.4 <folding>: dynamic folding for HTML lOgS......cccceceuiuririiiiriniieriiniieniinicesiinieneneiniens 59
8.11.5 <timestamp>, <timestampall>: show timestamps i lOZS.........ccceevererririierririierinnines 60
8.11.6 <showthreadid>: show thread ID in lOgs.......ccccovuimiiviniiriniiiiiiiicncccaes 60
8.11.7 <timedsessionlognames>: show timestamps in 10gS.......cccceuviviririiiriiiniiiiiiccines 60
8.11.8 <singlegloballog>, <singlesessionlog>: single file log OPtionccccevveviucueiriniirerricnes 61
8.11.9 <appendtoexisting>: append or overwrite existing session 10gs.........ccvveevrinicreirinaes 61
8.11.10 <logflushmode>: select log file fOrmat........ccccevviviriririnininininiriiicccccccceeees 61
8.11.11 <subthreadmode>: if and how to show log output from subthreads..........cccceceunucee. 62
8.11.12 <fileprefix>, <filesuffix>: text to add at begin and end of logfiles...........ccccceceurunucec. 62
8.11.13 <indentstring>: string to be used for indenting blocksccceuvuvieuiiniciciininicniininas 63
8.11.14 <xmltranslate>: show traffic in XMLcccccceeiiiiininnininiiiicccccee s 63
8.11.15 <msgdump>: dump SyncML traffic to files.......ccccoeiivvivivivinininiiiiiiicccceccee 04
8.11.16 <sessionlogs>: generate S€SSION LOZS......covuviiuiriiiiiiiiiiiiieiiiicece e 64
8.11.17 <sepsessionlogs>: No longer supported; use <singlesessionlog>instead.................. 65
8.11.18 <globallogs>: generate global lOgcccceuvuviviviviririniiiiiiiicccccc s 65
8.11.19 <logsessionstoglobal>: send session logs to global logfile.........cccccocveiiiiiiinninininne. 65
8.12 <configdate>: set timestamp for config fileceevvurrriinriiiiinnniiinninineicnieenn, 65
8.13 <neverputdevinf>: avoid PUT of devinf.........cccueereniiriininiiiiinnnnieennniieennnnnenn. 66
8.14 <systemtimezone>: override local system time ZONe......cccceverriiriiiiiiiiiiiiiniiiiiinnnnnnes 66
8.15 <definetimezone>: define custom time zone as VIIMEZONEcccuueee. 66

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 6

9. <transport>: Transport Configuration Sectioncccreremrnrsnsnnnnsn 68

9.1 <keepconnection>: HTTP 1.1 CONNECLION ...cccevvrummrrriiiiiiiiiiiinnnereieiciniiinnnneeeeeceesnnns 68
9.2 <bufferretryanswer>: buffer last answer for retries......cccvueeeeeererereeeeeeeeeeeeeeeeeeeeeeeeenn, 69
9.3 <protocol>: communNication ProtoCOl........cceiirrrrrurrrireiiiiiiiiiinneneeeeeniiiniereeeeeeeessnnnns 69
9.4 <httpport>: HTTP and OBEX/TCP setver port NUMDEr.......coovueerrueersueersnecssaneees 70
9.5 <ipaddress>: listener IP address......ccceeeiiiiiiiiiinnniieiiiiiiiininniieeeeiieeeeccsnsnnnanes 70
9.6 <obexservice>: OBEX SE1ViCe NAIMEcccevvrrrurrririeiiiiiiiiinnnieeeeiiiiinmmseeeeeeesennane 70
9.7 <maxthreads>: Max number of session threads per server process...........cceverenneeen. 7
9.8 <maxsessionruns>: Max sessions to be run by a processccccceeeereiicinnnneeeeeeennnnn. 71
10. <datatypes>: Data Type Definitions........cocserrmimsmsmsesssnnsnssnsmnnnaens 72
10.1 <fieldlist>: internal data field List......ccccceeeiiiiiiniiiiiiiiiiiiiiiiiiieeereeeccans 73
10.2 <field>: definition of an internal fieldccccovvurrrriiiiiiiiininiiiiiiiiiiieeee, 73
10.3 <mimeprofile>: definition of a mime-dir profile........ccccceevvvrumrerrriiiiiiisnnneeeeiiciinnnn. 75
10.3.1 <profile>: root profile defINItiONccceviiiviiriiiiiiriici s 76
10.3.2 <subprofile>: nested subprofile definitioN.......cccceueueeiieiiiiiiiiiicceenas 76
10.3.3 <property>: property defiitiON.......couewiiiiiiiiiieieieieieiieieiiisieeeee e 77
10.3.4 <value>: property or parameter value StOragecouiueuririeirivririeieriiniceneisisenessesennes 79
10.3.5 <enum>: enumerated VAlUES.......ccouiuriiiriiiiiiiciic e 81
10.3.6 <parameter>: property parameter defInitionccccceeuririririririninininininineecceeeeenes 82
10.3.7 <position>: control storage position and rEPEtitioNSccceverereririririririiceeeeeerenenes 84
10.3.8 <vtimezonegenmode>: VIIMEZONE generation modecccoceueuerviriierririccnennn. 87
10.3.9 <unfloattimestamps>: handling of floating tiMesStampPs........ccouvuerrvriieriiricieneiricenennns 87
10.4 <textprofile>: definition of a text format profileccccceevvnnnrrieiiiiiiiiiinnnnneeeennnnn. 88
10.4.1 <linemap>: mapping of text based formats to database fields.........ccccoeoeueeieiinnnnns 88
10.4.2 <numlines>: Number of iN€S t0 MAP......cccerririiiriiriniiiiiiiciiieecceeeeeees 88
10.4.3 <inheader>: header HNESccccceuviiiiiiiiiiiiiiiiicrc s 89
10.4.4 <allowempty>: empty field handling..........ccccoeeveiiiiiniiniic, 89
10.4.5 <headertag>: tagged header handling..........ccccccecuiiiiiininininiiinicccees 89
10.4.6 <valuetype>: type of text field.......ccoeiiniiiiiiiiiii s 89
10.4.7 RFC822 email body OPHONS......cuvviiuciiiiiiiiiiiicieiciicienicesiiseesse s 90
10.5 <datatype>: definition of a datatype.......cceeeeiiinnnrriiieiiiiiiiiiniiiieeecccnreeeec, 91
10.5.1 <use>: MIME-DIR profile, text profile or field list to use for datatype.........ccceueeee. 91
10.5.2 <version>: vCard or vCalendar VErsion.......cocvueunieunininininiciicsciscscscse e 92
10.5.3 <typestring>, <versionstring>: MIME type and versionccccceueeervureriereurinicnenen. 92
10.5.4 <zippedbindata>: Enable/disable special compressed (non-standard)
LM FOIMIAL 1.ttt bbbt 93
10.5.5 <zipcompressionlevel>: Compression level for <zippedbindata>
(670301 03 LI Lo o R 93
10.5.6 <binaryparts>: Allow unencoded binary in CONtENtcccrvivriviieiiiriiciiccece, 93
10.5.7 <unicodedata>, <bigendian>: Unicode CONENt.......cvuvuriririririririririiiiiiccccicceennes 94
10.5.8 <initscript>: Initialisation of type-specific SCHPt CONEX .. umriiimiriiniirirriiierinriieeneenns 94
10.5.9 <incomingscript>, <outgoingscript>: Custom pre- and postprocessing
LS5 OO 95
10.5.10 <filterinitscript>, <filterscript>: Script-based data filtering...........cccovvvuriririvcccnenas 95
10.5.11 <processitemscript>: Custom processing for inCOMING ItEMSvrverruriereerruririeriunne 97
10.5.12 <comparescript>: Custom item COMPATISON ...c.cuevivirirririiiiiiiiiniiiiiiniiieesesenenes 98
10.5.13 <mergescript>: CUStOm 1M MEIEE.....cccurruimirererererirerereretetrisesestsesisisisssisssssssssesesesenenes 99
10.5.14 <mimedirmode>: MIME-DIR conformancecocoeuviviviviiiccceeeieieennene 100
10.6 RRULE field BIOCK.....ccccuiiiiuiiiiiiiiitiiiiiieiitiecciecnnecsneecseessansecsssssssssssssesssnnes 100
11. <server>, <client>: General Server and Client Settings101
11.1 <maxsyncmlversion>,<minsyncmlversion>: SyncML version suppott................ 101
11.2 <sessiontimeout>: Timeout for unfinished sessions......cceevurerrrreiiiiirsnnreeeecieiiinnn 102

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

11.3 <requestmaxtime>: max time for request processing........eccuerereeiriirsinnneeeeeeeninnns 102
11.4 <requestmintime>: artifical SIowW dOWNccccvuurrriiiiiiiiiiiiiiiiiiiiiiccrneee e 102
11.5 <externalurl>: specify URL used to access the Server......cccueureeiirinneeeresinnnneeennnns 103
11.6 <requestedauth>,<requiredauth>: SyncML Authenticationcccccceeereruvrreennns 103
11.7 <autononce>: MD5 nonce generation mode..........eeeeeeiiiiiiinnnnreeeiiiiininnnneeeeeeennnn 104
11.8 <constantnonce>: CONStaNt NONCE SIING ..ccvvrrrrrrrrrrreeeiiiiiiiiinnieeeeeiiiisiisneeeeeeessenns 104
11.9 <sendrespuri>, <respurionlywhendifferent>: RespURI configuration................ 104
11.10 <simpleauthuser>, <simpleauthpw>: single user modeccceeerurrrrerirrrrrrennnes 105
11.11 <multithread>: Allow multi-threaded eXeCution.......cceceuverreerueerrenieeeencenneennnns 105
11.12 <sessioninitscript™: Session iNit SCIPt...ccccrrrrrrrreieriiiiiiirinireeeiiiiiiiniireeeeeeeeannn, 105
11.13 <sessionfinishscript>: Session finish SCLIPt ...ceevrurreiiiiiireeiiiiirieiiiitieienieeeenns 106
11.14 <sentitemstatusscript>, <receiveditemstatusscript>: Session level
status code handling.......ouuiiiiiiiiiiiiiiiiiiiiie s 106
11.15 <customgetputscript>, <customendputscript>: Creation of custom
SyncML Get and Put commandscoouuieeiiiiiieeiniieeeniieeiieesnseessssseesssseeens 106
11.16 <customgethandlerscript>: Custom handling of SyncML Get
o703 5 03 .4 5 o L £ 107
11.17 <customputresulthandlerscript>: Custom handling of SyncML
Put/Result COMMANS ...ceeveeerrreeenneeiiiiereerreeesssssseeeeeeesssssssssssssssesssssssssssssssssssssssssssssssnnns 108
11.18 <waitforstatusofinterrupted>: SyncML command flow optionccceeuvreeennnes 108
11.19 <relyonearlymaps>: Add resending poliCy.......ccccceeeeiiiiiiunnrrreeeiiiiiiininnnneneeeeennnnnn. 108
11.20 <debugchunkmaxsize>: LargeObject chunk size limit for testing..........cccc...... 109
11.21 <deletinggoneok>: Handling of delete for non-existing itemscccccuveeruveennnee. 109
11.22 <usertimezone>: Set user's default time ZONeceevueeiririiiniieciineecnineennneeennnee 109
11.23 <autoenddateinclusive>: end date for allday events inclusiveccccceeeeeeeeeeenenns 109
11.24 <abortonallitemsfailed>: error handling optionccecevemrrrieeeiiiiiiiiinneeeeeeennnnn. 110
11.25 <showctcapproperties>: show field support details in device
INFOIMAION cuvviiiiiiiiiiiiiiieeeenctttee et e e e e e e saass e e e e e e e s e ssssasaesesssssssnnnns 110
11.26 <showtypesizeinctcapl0>: show size and type in SyncML 1.0 devInf 110
11.27 <enumdefaultpropparams>: enumerate default property parameter's
values as PIrOPErty NAIMES ...cccciiiiiiiiiiiiiiiiiiiiiiiiiiiiisissiisssessssssssssssssssssssssssssssssssssssssses 11
11.28 <acceptserveralerted>: Acceptance of server alerted sync types......cccceeeueveeennnnes 111
11.29 <logfile>: Activity log text file.....cccovmrrririiiiiiiiniriiiiiiiiiitiiieee e m
11.30 <logenabled>: Activity log €nableccccceevvumrrrriiiiiiiiiiiiiiniiieeiiiicnreeee e 112
11.31 <logformat>: Activity 10@ fOrmat........ccceeeevrurreiiiiiiiiiniiiieennineeceee e 112
11.32 <loglabels>: Activity 10g header........ccceeevrurireininiiieiiiiiieiniieeccteee e 114
11.33 <logininitscript>, <loginfinishscript>: Pre- and post-login scriptscc.ce.... 114
11.34 <datastore>: General Datastore SEttingsccccerreeeeeiiiiiiinnnnieeeeiiiniininneeeeeeennnns 115
11.34.1 <alias>: alternate name for this datastOre........ccoevierririnicriiiinieinieeceeenens 116
11.34.2 <dbtypeid>: datastore type IDcccocouiiiiniiiiiiniiiiiiiciicccecees 116
11.34.3 <displayname>: decriptive name for a datastore........covevvivirmeininicciiiiccsiicnens 117
11.34.4 <readonly>: read-only datastoreccccceueuiiriviiininininininiiiiccccce s 117
11.34.5 <deletewins>: delete overrides replacecooceuviriiiriirinieiiiiiniieiicceeees 117
11.34.6 <tryupdatedeleted>: try to update "deleted" itemscoouceuvierricrrierriverricreiereienne 118
11.34.7 <reportupdates>: transmit UPdates tO FEMOLE.....ceururuririririririisiiiieieierererererenerenenees 118
11.34.8 <maxitemspermessage>: maximum number of data items per SyncML
8 TG o PR 118
11.34.9 <alwayssendlocalid>: send locallD (GUID) in all operations (not only
AAAS) et 119
11.34.10 <conflictstrategy>, <slowsyncstrategy>, <firsttimestrategy>: sync
CONTlICE FESOIULION SEIALEGYvuvueiiiniiiiiiiieiiici et 119
11.34.11 <typesupport>: datastore's SUPPOLLE LYPES ..cucvuvuirvmirvrirerireirireiriieneiereeeseeeneaenaees 120

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

11.34.12 <use>: USe @ dAtALYPE c.cucuiuieiuiiiiiiiiiiiiiiciciiciee et s
11.34.13 <ds12filters>: enable SyncML DS 1.2 filtefing.......cccocevuvivininiiiiccccceceeeennnes
11.34.14 <daterangesupport>: enable date range filtering..........cocoeevviviiirrininicriniicninicnen
11.34.15 <acceptfilter>: check iNCOMING TLEMSvvviieiiiiiiiiieiicece e
11.34.16 <silentdiscard>: discard not accepted items silentlyccocevveciiiiciciicncnnne.
11.34.17 <localdbfilter>: filter subset of datastore ..o
11.34.18 <invisiblefilter>: filter invisible ItEMS......ccccevruririiriiriiiiiicccece
11.34.19 <makevisiblefilter>: make item Visiblecccoovriiirniirniiiicce,
11.34.20 <makepassfilter>: make INCOMING ILEMS PASS ..cuvueuirieieiuirieiiiiiicieieeieeereerereienenenenes
11.34.21 <datastoreinitscript>: script called before accessing databaseccccccevuvuvirunnee.
11.34.22 <datastorefinishscript>: script called after accessing database.........cccccccvueuvuriurnnnne.
11.34.23 <adminreadyscript>: script called when admin data (targets, maps) are

FEA 1ottt
11.34.24 <syncendscript>: script executed at end Of SYNC......ccvviviviririiiiiicciecceeees
11.34.25 <alertscript>: script called at Sync alert.. ..o
11.34.26 <alertprepscript>: script called before sending sync aleft........cccoveeverrivicrrinianen.
11.34.27 <sentitemstatusscript>: script to handle status codes for sent items..........c.c........
11.34.28 <receiveditemstatusscript>: script to handle status codes for received

11.34.29 <resendfailing>: re-send failing items in NEXt SESSION ..cuvvririucvevriiucrivriiieiinricinans
11.34.30 <timeutc>, <timestamputc>: type of database timestampccccceeueuerererrrrurnnnnes
11.34.31 <datatimezone>: timezone for database timesStampsccccecucueueueieeriieiienririrenenes
11.34.32 <userzoneoutput™>: output data il USET ZOMNE......ccouruerririuieerririiieriiniieriisieensessseens
11.34.33 <datacharset>: character set to be used for database Stringsc.ccccevveveuruncnnee.
11.34.34 <datalineends>: encoding of line ends within database stringsccccocvuvirunee.
11.34.35 <updateallfields>: always update all fields..........ccoervviiiiniiiiice,
11.34.36 <fromremoteonlysupport>: Support for "one-way from remote sync"...............
11.34.37 <synctimestampatend>: How to determine "time of last sync"ccccccvuvcunnce.
11.34.38 <storesyncidentifiers> (or <storelastsyncidentifier>): custom "time of

12t SYNC" TAENTIIET c..vevieeieieieceieir ettt en e
11.34.39 <resumesupport>: support for resuming interrupted sync session.........cceeureeee.
11.34.40 <resumeitemsupport>: support for resuming half-transmitted data

items after INEITUPLEA SYNC..uiuiiiiiiiiiiciceieie et
11.34.41 <fieldmap>: mapping datatype's fields to database fields......cccoveveerrricccrverecennes

11.34.41.1 <map>, <mapredefine>: mapping a datatype field to a database

11.34.41.2 <automap>: auto-map internal to DB fields.......ccccooevnvvnnniiiiiiiiiiinns
11.34.41.3 <initscript>: initialize accessing database.........ccccevuvvviririririninininiiiiccccees
11.34.41.4 <afterreadscript>: post-process item read from database.........ccccccocoeevrinnanee.
11.34.41.5 <beforewritescript>: prepare writing item to database..........cocoevevvvevucrrvrnnnen.
11.34.41.6 <finalisationscript™>: finalize WIitten IEMScocovvrrevrvrirerriiiicieiriceeceeae
11.34.41.7 <finishscript>: finish access to database.........cccccovvvrriririiininininiiiiicccicnes
11.35 <superdatastore>: combined datastore definition........cceeereruvreeiiinreeeniiineeeennns
11.35.1 <contains>: Include a datastore in a SUPErdatastore........cocovviieuvvriiucrririicrsericienans
11.35.2 <dispatchfilter>: filter to direct INCOMING ILEMS......c.cveverruririririririiiceiciereieieenenenenenens
11.35.3 <guidprefix>: prefix for item ID ...
11.36 <remoterule>: special rules for specifiC rfemMOtesccevreerrrrrrrrereiiiiiriinnneeeeeeennnn.
11.36.1 <HANAIIUIES ..o s
11.36.2 device identification tags for <remoterule> ...
11.30.3 <AESCLIPUVENAMES ..ottt
11.36.4 <limitedfieldlengths>: device has short fields........c.cccevivieiiiiniiininiiiiinicciee,
11.36.5 <noemptyproperties>: do not send empty Properties.......ccevurrererrireerrvrieerrurienens

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

11.36.6 <updateclientinslowsync>: update client records during slowsync..........cccceevruene
11.36.7 <updateserverinslowsync>: update server records during slowsync........c.ceceeeveeeee.
11.36.8 <noreplaceinslowsync>: never update client records during slowsync..........c.c......
11.36.9 <ignoredevinfmaxsize>: ignore maximum field size reported in client's

11.36.10 <dspathindevinf>, <dscgiindevinf>: how to show datastore name in

devInf Sent t0 CHENt. ..o
11.36.11 <allowmessageretries>: allow client to send the same message twice...........c........
11.36.12 <completefromclientonly>: allow client to send the same message

11.36.13 <forcelocaltime>: always send time information as localtimec.ccccceveveururerennee
11.36.14 <forceutc>: always send time information as localtime.........c.ccceeeeeeeccrcrcrerenenennn
11.36.15 <treataslocaltime>: always treat received information as localtime.............cc.........
11.36.16 <treatasutc>: always treat received information as UTC ..o
11.36.17 <nocontentfolding>: prevent folding long linesccceeuviviicirviiiinnicninnnnn
11.36.18 <autoenddateinclusive>: end date for allday events inclusive.......ococccecccueuennees
11.36.19 <outputcharset>: set default output character Setcooveviccccccieiininnes
11.36.20 <inputcharset>: set default input character Set.........covvviviieiicicceeeeieeeenes
11.36.21 <legacymode>, <lenientmode>: use relaxed conformance modes..........cccvuueeeee.
11.36.22 <rejectstatus>: reject sync with deviCe......ocouiuiiiiiiiiniiciiiiiicciccccecens
11.36.23 <requestmaxtime>: max time for request ProCesSINgccceveeeeuerererererevrieerererens
11.36.24 <rulescript>: script to execute if rule applies......cccevuviviriririririniiiiiccccccceees

12. <server type="sql"/"odbc">, <client type="sql"/"odbc">:

146

SQL/ODBC based Server or Client Configccccrumsmrmmmnmsnsmsnnsnsnennnnanena 151

12.1 SQL Statement ProCesSingcuuvrreeeriirneeeriiineeeiisiueeeensiieesesissseesesssneesesssnessssssnes
12.1.1 Placeholders for all SQL StAtEMENTS w.veveuerirerierereiiiririeiereseirtseerereseesteeesesesesesesseseseneseeas
12.1.2 Placeholders for SQL statements within <datastOre™cccoeevrerereerenrrereererenens
12.1.3 Placeholders for SQL data access statements within <datastore>c.ccoeveeceerenne
12.1.4 Executing SQL statements from SCIIPLS......ccvuviiuerriniieininiiieneiiiensiisesessssesenssseeens

12.2 <datasource>: ODBC data SOUICe NAME.....ccovruurrrrririiiiiiiiinreeeeeieiniiininneeeeeeeeesines

12.3 <dbuser>: ODBC database user NAME......ccccevruurrrrreeiiiiiiinnnneeeeeieiiiinnnneneeeeeeeennes

12.4 <dbconnectionstring>: ODBC database connection stfingcccceeeevurreeeeeeennnnn.

12.5 <dbpass>: ODBC database password.........cccceeerurreeiiiiuieeiniinneeinnnnneeiennnneeeennnns

12.6 <preventconnectattrs>: prevent setting connection attributescccceeeeuveeeeeeenn.

12.7 <dbtimeout>: ODBC tiMEOULccerrrrrrrrrriiirreieitieeeeee e eteeeeseeee e aeeeeesnaes

12.8 <afterconnectscript>: Script executed whenever new DB connection is

103 1SS 4 T« PR

12.9 <transactionmode>: Transaction isolation Modecccuveervrrrreiiiinreeeniineneeennns

12.10 <usecursorlib>: usage of ODBC cursor libraryccoovvvviriiiieeiiiiiiniinnnneeeeeennnnn.

12.11 <textmap>, <textauth>, <textpath>: outdated - no longer available..................

12.12 <cleartextpw>: plain text password in database......cccccuvererrurrrriiinnereeeniieneeennns

12.13 <md5userpass>: MD5 digest passwort in databaseccceecvveeiiinrreeiiiinnneeicnnnes

12.14 <md5hex>: MD?5 digest stored as hex string in databasecccevvevinnnnnnnnnnennn.

12.15 <getdevicesql>, <newdevicesql>, <savenoncesql>, <saveinfosql>:

Device Management.. .. iuuuieiieriiiiiiiiiieeeeeeeeiiitieeeeeteesessssteesesseessssssssssessesssssssssnes

12.16 <userkeysql>: query for user authentiCationceeeeeeevnuiieieeeiiiiiinninneeeeeeenennn.

12.17 <logincheckscript>: custom login checking SCriptccccevuvrrreeeiiiiiiiinnnneeeeeennnnn.

12.18 <timestampsql>: query for getting database time......ccccecvvurrrrrreeiiiiiiinnnnneeeeennnnn.

12.19 <writelogsql>: SQL statement to write activity log entry.......cccceeeuveererineeeeennnns

12.20 <datastore type="'sql" /" odbc">: SQL and ODBC Datastore specific

SEULIIS . eeeeiiiiiiiurrrrreeeeiiiiiititreeeeeeeeiitarrt e e e e e ees s sasassaeeeessssssssssaseeeeessssssssssaaeeesssssssssssneeesans
12.20.1 <folderkeysql>: get data subselection Keycocovvviviviviniiiiiiiciiccccccne,

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

151

157
158

12.20.2 <synctargetgetsql>, <synctargetnewsql>, <synctargetupdatesql>,

<synctargetdeletesql>: Sync target MaNAZEMENT.....uvcviiiiiiiiicceceeecee e 165
12.20.3 <synctimestamp>: format for timestamps in target table..........cccoovvevirnicinininnnes 169
12.20.4 <lastmodfieldtype>: modified time Stamp tyPe.....ccovevrvriiuirririierririieriisiieneiienens 169
12.20.5 <selectmapallsql>, <insertmapsql>, <updatemapsql>,

<deletemapsql>: Map table MaNAGEMENL......ccccoiiiiuiiiiiiiiiicicicie e 169
12.20.6 <sqlitefile>: SQLite database file NAMEccceeuviriiiiiiriiciiic s 171
12.20.7 <sqlitebusytimeout>: SQLite database file NaAMEcoeeverriviviiiiriniiiiiccien, 172
12.20.8 <quotingmode>: how ODBC strings must be escaped for the database................ 172
12.20.9 <dbcanfilter>: use filtering in WHERE clause.........cccccoovviviiiniiniiiicn 172
12.20.10 <eatlycommit>: commit at end of SyncML message exchange..........ccccoeuvuviuruennes 173
12.20.11 <multicursor>: no longer supported in version 3.0......ccccoerervriicviniicniniencnnnnes 173
12.20.12 <commititems>: commit each item updateocovuvevevirininininiiiicccceceeene 173
12.20.13 <modtimestamp>: combined date and time for modification

L8 8 TC 72T 0 o OO 173
12.20.14 <selectidandmodifiedsql>: read IDs and timestampscccccoevvvviriervirincrserinniennns 174
12.20.15 <selectdatasql>: read record from database..........cccccevuvivirivinininnninniccccccnee 174
12.20.16 <insertdatasql>, <updatedatasql>, <deletedatasql>, <zapdatasql>:

write records to databasecocuiiiviiiiiiiiiicic s 175
12.20.17 <ignoreaffectedcount>: Ignore SQLROWCOUNLcoovveiiivriiiiiiiiiiiiciiiicciiinens 175

12.20.18 <obtainidafterinsert>, <obtainlocalidsql>, <determineidonce>,
<minnextid>, <specialidmode>, <insertreturnsid>, <localidscript>: local

object ID Managementcceviieiiiiiiiiiiiice e 176
12.20.19 <map>: SQL specific field mapping featurescccooviervirinicriirinieieiniccnininans 178
12.20.20 <array>: definition of master - detail record StrUCtULESccevvvvciiucrccrcrerereninnne 179
12.20.21 <maxrepeat>, <repeatinc>, <storeempty>: detail record storage

(03 o1 T 1O 181
12.20.22 <noitemsfilter>: detail record storage filtercooeerrviiirriniiiiriniciieeicnens 181
12.20.23 <selectarraysql>, <deletearraysql>, <insertelementsql>: detail record
SOOI 182
12.20.24 <alwaysclean>: clean detail recOrds 0N INSEIT . ouiniiiiiceieieieieierereierererereeeneeeeseens 182
12.20.25 <optionfilterscript>: prepare SQL filter according to options........c.cceeevecvrvecunnne 182

13. <server type="textdb">, <client type="textdb">: Text

File Based Server or Client.......ccccimcmsmsmmsnmsnsssmsnsssssnsssssnsssssnsssssnnnnnnss 18 3
14. <server type="plugin™>, <client type="plugin™>: Plugin

Based Server or Client Configcecemimnmsmsmsmmmmmmsmsmsmssssnsmsnsnsasanannnnn 184

14.1 plugin module: global Settingsccccvuurrrieiiiiiiiiiniiiiiieiiiiiirreee s 184
14.1.1 <plugin_module>.......ccccviiiiiii s 184
14.1.2 <plugin_sessioNauth™........ccccccoiuiiiiiiiiiiiiiiiii e 185
14.1.3 <plugin_deviceadmin >ccccceviriiiiniiiiiriiiiieiie s 185
14.1.4 <PIuGIn_Paramis™cocviviriririiiiiiiiicccieeeee bbbt 185

14.2 <datastore type=""plugin'' >: Plugin Datastore specific settingscceeeurrrreruunes 185
14.2.1 <plugin_datastoreadmMin> ..o s 185
14.2.2 <plugin_module> ... 186
14.2.3 <PIUGIN_PALAMIS™ ..o 186
14.2.4 <plugin_debugflags™cccooiviiiiiiiiiiii s 186
14.2.5 <plugin_module_admin>,<plugin_params_admin>,........ <plugin_debugflags_admin

14.3 plugin module “SDK_textdb”.......ccccceeiriuiiiiiiinniiiiiniiiiiriniecreecneeene e 187
14.3.1 Files of the textdb ..o 187
14.3.2 PluginParams of the texXtdbcccovviviiiiiiiiiiiicccs 187

14.4 plugin module “FILEOBJ”ccoiviiiiiiiiiiiiiiinieiciecnineccneecnecesnecessssesssnes 188

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

186

14.4.1 Files of the fileob] MOAUIES ... 188
15. <client>, <server>: Synthesis SyncML Engine library only

configuration tagsl......l.l.l......l.l.l......l.l.l......l.l.l......l.l.l......l.l.l.l....l.l.l189
15.1 <binfilespath>: Path for persistent storage of client settings and admin

L« B 2 TR 189
15.2 <binfilesactive>: enable binfile based admin.........ccccovvvvrnnnreriiiiiiiiinnnnneeeeeiiiiinnnn 189
15.3 <crcchangedetection>: enable CRC based change detectioncceeeeenueeeennnee 189
16. <client>: Command line client-only configuration tagsc:...191
16.1 <defaultsyncmlversion>: Set default SyncML Version to start a session.............. 191
16.2 <defaultauth>: Set default auth method..........uuiiiiiiiiiiniiiiiiiiiiiiiiiieeeecccnnn, 191
16.3 <defaultauthencoding>: Set default auth encoding..........ccccuvvvereiiiiinnnnnneeeennnnnnn. 191
16.4 <defaultauthnonce>: Set default NONCE......ccovvrurrririiiiiiirirnneriiiiiiiinreeeeeeeeaann, 192
16.5 <newsessionforretry>: Use a new sessionlD for retriesccccceeeeereeeeeeeeeeenenennennnns 192
16.6 <originaluriforretry>: Use original URI for retrycccoevvinnrriiieiiiiiiiinnnneeeeennnnn. 192
16.7 <smartauthretry>: Use smart retry attempt variations......ceeeecueeeeeereessissnnneeeeeennnn 192
16.8 <putdevinfatslowsync>: Always send Device Info at Slowsync........cccceeeuuvreeennnes 193
16.9 <localdbuser>, <localdbpassword>: Login to local databasecccceeeurreeennnes 193
16.10 <nolocaldblogin>: Prevent local DB 10@incceveviiiiiinnnnniiieiiiiiiiinnnnieeeeeiicnnnnn. 193
16.11 <syncmlencoding>: SyncML encoding format.......ccccceeevrurrrriereiiiiiniiinnneneeeecnnnn. 193
16.12 <serverurl>: Remote SyncML server URL........cccccceiermriiiiinniineiinnnieeieninnneennnnnns 194
16.13 <serveruser>, <serverpassword>: Login to remote SyncML server...........cc....... 194
16.14 <sockshost>, <proxyhost>: PrOXy SEIVEIS.......cccccrerrirrirrrsrnnrreereesiisssssnnneneeeeessnnns 194
16.15 <proxyuser>, <proxypassword>: Proxy authccccceevvurrrrrrrriiiiiinsnneneeeececnnnnne 194
16.16 <transportuser>, <transportpassword>: Login to remote SyncML
T3 195
16.17 <syncrequest>: Request to sync a datastore.......cccceeeeriiiviunnneeeeeiiiinnsinnnneeeeeennnn 195
16.17.1 <dbpath>: path of remote server's datastOrecvererrerieremririereeriiererreseerenreneeenens 195
16.17.2 <syncmode>: Synchronisation MOAE......c.ceueueururiririririnininiieecceeeeeierererererenenesesenes 195
16.17.3 <slowsync>: FOLce @ SIOW SYINIC .c.cceiuiuiuiueuerereiereieiereieinirisisietsiste st 196
16.17.4 <localpathextension>: local datastore OPtONScccceieeeeueueurueieieieieieieieieeeeeeseenes 196
16.17.5 <recordfilter>: define SyncML DS 1.2 record filterccovviiiicicccciciinnienes 197
16.17.6 <recordfilterinclusive>: define inclusive SyncML DS 1.2 record filter.................... 197

17. List of built-in timezonNesS.....cccccsreeeesessssssasanannssnnnnnnnnnnnnnnnnnsssnnenes 1 98
18- Error codesllllllllllIllllllllllllllIllllllllllllIllllllllllllllIlllllllllllllllllllllllllllll199

18.1 SyNCML Status Codes....cuuuuriiiiiiireiiniiireiiiitieeeiiieeceiieeceareeceare e sssessessnnnes 199
18.2 Internal Error COdesuuvnreiiiiiiiiiieiiitiiicniteeceeteee st sesane s sas s s aae e s s sanes 200
19. INd@Xurmiimrimiiainanennennnnnensnnassnasnnasnnnsanasnnasanasnnnsnnnsnnnsnnnsnnnsnnnsnnann 202
19.1 Alphabetic Index of all config XML tagscccceerrurreieninieeiiniineeinninneenensnneesennnns 202

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 12

2. What's New?

2.1 New in this manual

e This chapter — intended as a quick overview to see what is new in this release. In particular,
paragraph 2.2.3 "How to migrate from 3.0 to 3.2" details the (simple) steps to take to
upgrade an existing installation.

e An overview diagram "SySync_script call flow.pdf" (not in this manual itself, but as a sepa-
rate PDF document in the product package) showing which scripts (PRO version only) are
called when in the process of sync session, and what is the typical use of a script. This is in-
tended as a reference card to quickly find out which scripts to use to accomplish a certain
customisation task.

e A separate chapter (see chapter 5) about time zones and how these are handled in the
SyncML engine. We recommend to read this chapter, as correct handling of timezones
is crucial for a successful calendar sync.

2.2 New in SyncML Engine 3.2 and newer compared to 3.0

2.2.1 General changes

e New Version numbering convention (borrowed from Linux kernel numbering):
Odd numbers are development versions, that may be released from time to time as beta or
for solving very specific customer needs in a project.
Even numbers are official release versions.

e Completely revised and greatly enhanced handling of timezones. Apart from a lot of new
features and script functions to work efficiently with time zones, the most important gen-
eral change is the internal representation of time stamps. In engine versions before 3.1,
the internal timestamp value was always represented in UTC (Universal Time Coordinated)
along with a time zone offset indicating the time zone context. In engine version starting with
3.1, the internal timestamp value represents time in the context of the time zone iden-
tifier that is attached to it. This is a small, but important change, which allows to handle all
aspects of timestamps, including "floating" timestamps, in a consistent way throughout the
entire data path from backend database to remote SyncML device. See chapter 5 for more de-
tails about timestamps and timezones.

Most existing setups are not or only slightly affected by these changes —only configura-
tions which were using the LOCALIZEDASUTC, RELATIVEASUTC,
UTCASRELATIVE, LOCALZONEOFFSET, SETZONEOFFSET, ISRELATIVE and
SETRELATIVE functions in scripts or a "zoneoffset_xxx" conversion mode need to be
adapted — and normally the adapted version is simpler and much easier to understand as the
new timezone system is more logical and consistent.

Our sample config for the PRO servers until 3.1 used RELATIVEASUTC and "zoneoft-
set_secs" two times — please refer to instructions in paragraph 2.2.3 ""How to migrate from
3.0 to 3.2" how to update your config.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 13

2.2.2 New Features

¢ SyncML engine now available as library — Starting with Synthesis SyncML engine 3.1, the
core engine with all SyncML functionality, SQL/ODBC/SQLite and plugin database
interfaces, complete XML configuration is now available as a dynamically linkable library for
various platforms. Using the Synthesis SyncML SDK, custom SyncML applications can be
built in native languages (C/C++/Delphi etc.) as well as in Java or .net.

¢ Extended support for symbolic time zones — which can be referenced and stored in the
database by name. These symbolic time zones handle DST rules automatically (not only for
the system's local zone, but any time zone). See chapter 5 for an overview of time zones. The
PRO version also has many new built-in script functions for working with time zones:
ZONEOFFSET(), TIMEZONE(), VIIMEZONE(), SETTIMEZONE)(),
SETFLOATING(), CONVERTTOZONE(), CONVERTTOUSERZONE)),
USERTIMEZONE(), SETUSERTIMEZONE(), ISDATEONLY (), DATEONLY),
ISFLOATING() — see (6.14.4).

e Per user time zones — using <usertimezone> (see 11.22) and SETUSERTIMEZONE)) (see
0.14.4) it is possible to assign a default time zone on a per-user level. This is important with
client devices that do not support UTC, and must be server in a specific local time zone.

e DPer datastore time zone — using the new <datatimezone> (see 11.34.31) which replaces
former <timeutc> (still supported for compatibility).

e Record level or field level time zones e.g. for storing originating time zone of a calendar
entry along with the entry, or to define floating timestamps (timestamps not bound to a time
zone). To map the timezone of a timestamp field to a database string field, use the new
"zonename" database field type (see 11.34.41.1). To create TZ, DAYLIGHT and TZID
values in vCalendar/iCalendar data formats, new conversion modes "TZ", "DAYLIGHT",
"TZID" have been added (see 10.3.4). To include full time zone specification in
VTIMEZONE format, a predefined <subprofile mode="vtimezone"> (see 10.3.2) has been
added.

e PRO only: Support for maintaining relational links between items by providing an op-
tional post-processing step at the end of the session (when the data sets are known to be in
sync) trough the new <finalisationscript> (see 11.34.41.6).

e PRO only: Support for regular expression search, replace and pattern split (using new script
functions REGEX_FIND, REGEX_MATCH, REGEX_SPLIT, REGEX_REPLACE, see
0.14.2). These can greatly simplify value conversion scripts.

e PRO only: Script language now supports the WHILE() statement in addition to the
LOQOP statement.

e PRO only: A lot of new built-in script functions: SYNCMLVERS(), EXPLODE(), ABS(),
SIGN(), NUMFORMAT(), DAYUNITS(), MONTHDAYS(), PARSEEMAILSPEC(),
MAKEEMAILSPEC(), SLEEPMS(), TIMESTAMPTODBINT(),
DBINTTOTIMESTAMP(), CONVERTTODATAZONE(), ADDTARGETCGI(),
SETRECORDFILTER(), SETDAYSRANGE(), TARGETSETTING() - see (6.14).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 14

¢ Enhanced support for calendar content formats — new conversion modes "valuetype",
"tzid", "tz", "daylight", "autodate", "autoenddate" see (10.3.4), new script functions to de-
tects/generate all-day events: ALLDAYCOUNT(), MAKEALLDAY() and to generate and
expand recurring events: RECURRENCE_DATE(), RECURRENCE_COUNTY(), see
(6.14.3).

¢ SyncML max message and object size limits are now configurable using <maxmsgsize>,
<maxobjsize> (see 8.3 and 8.4).

¢ Debug logging enhanced — now shows timestamps with millisecond resolution. Blocks
now have a "enclosing" navigation link which allows jumping to the beginning or end of an
enclosing block in the hierarchy.

¢ SyncML message dumping enhanced — messages are now saved on a per-session basis
and message dumping can be switched on and off in scripts, e.g. based on what user is logged
in or what device type is being synchronized. See <msgdump> (8.11.15), <xmltranslate>
(8.11.14) and the related script functions SETMSGDUMP and SETXMLTRANSLATE
(6.14.5).

e Script execution logging enhanced — colorized to recognize comments, executed code and
conditionally skipped code at a glance. Condensed output to avoid too much detail by default
(but new "expressions" debug option still allows in-detail expression debugging, see 8.11.2).

New script functions DEBUGSHOWITEM() and DEBUGSHOWYVARS() can be used to
show the contents of a sync item or of all local script variables in the log, see 6.14.5.

e Optional parameters for built-in script functions — many of the new 3.1 engine's scripting
functions and some of the existing functions now have optional parameters which can be
omitted when no special non-default behaviour is needed.

e Config variables: These are variable strings that can be referenced in the XML config using
$(varname) syntax (see 4.2) or for conditional config sections (see 4.5).
Config variables are either preset by the operating environment (with values like engine
version, device ID, file paths to standard config, temp, user directories etc., see 4.4), defined
from the command line using the —D option (for executable program versions, use -h option
to show syntax options), via the "/configvars" engine settings key (for library versions).

e Conditional config: All config XML tags now have generic "if", "ifdef" and "ifndef"
attributes (see 4.5) that can be used to make certain config sections dependent on config
variables (e.g. SyncML engine version). This simplifies using the same config file for different
versions of the SyncML engine, different platform, different operating conditions.

2.2.3 How to migrate from 3.0 to 3.2 or newer (up to 3.4)

Existing 3.0 installations usually need some changes when based on our 3.0 configuration sample
to run with SyncML engine 3.2 or later. Some configurations that did not make use of time-zone
related features might need no changes at all.

Please check the following:

e Obsolete time zone conversion modes: zoneoffset_secs, zoneoffset_mins,
zoneoffset_hours are no longer available. These have been replaced by the much more
versatile "tz" mode (see 10.3.4).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 15

If your configuration is based on the sample configuration as delivered with the 3.0 version,
you'll likely have two occurrences of zoneoffset_secs for the "TZ" field. The way this field
was defined in 3.0 and earlier was not correct vCalendar 1.0 usage anyway, and almost no cli-
ent supported it, so it had no real meaning.

If you want to be prepared to save the originating time zone along with each calendar item,
change the type of the TIMEZONE field in the "calendar" <fieldlist> from string:

‘<fie1d name="TIMEZONE" type="string" compare="never"/> ‘

to integer

‘<fie1d name="TIMEZONE" type="integer" compare:"never”/>‘

This will cause your TIMEZONE field in the database store a minute offset to UTC instead
of a seconds offset as in 3.0.

Then move the first occurrence of "<property name="TZ">...</property>" one level up
(out of "<subprofile name="VEVENT" ...>" into "<profile name="VCALENDAR"...>"),
and delete the second occuttrence of "<property name="TZ">...</property>":

<profile name="VCALENDAR" nummandatory="1">
<property name="VERSION" mandatory="yes">
<value conversion="version"/>
</propertys>
<property name="TZ">
<value field="TIMEZONE" conversion="tz"/>
</property>
<!-- sub-profile for events -->
<subprofile name="VEVENT" nummandatory="1" field="KIND" ...>
NnrorertEsz o nmrzn
property nome=
1] n 1] n
</property> N
</subprofile>
<!-- sub-profile for events -->
<subprofile name="VTODO" nummandatory="1" field="KIND" ...>
=1 n
1] n] n
R N

Alternatively, if you do not need the TIMEZONE information in your application, just
remove the two <property name="TZ">...</property> definitions entirely from the config
file.

e <timeutc> and <timestamputc> should be changed to <datatimezone>: No change is
needed, but the SyncML engine will show a warning when <timeutc> or <timestamputc >
(see 11.34.30) are used as these should be replaced by the more versatile <datatimezone>
(see 11.34.31).

¢ PRO only - script functions no longer supported: LOCALIZEDASUTC,
RELATIVEASUTC, UTCASRELATIVE, LOCALZONEOFFSET, SETZONEOFFSET,
ISRELATIVE and SETRELATIVE are not supported any more because they do not fit with
the new enhanced timezone handling.
If your configuration is based on the sample configuration as delivered with the 3.0 version,

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 16

you'll likely have two occurrences of RELATIVEASUTC in the <comparescript> of
<datatype> vCalendar10. These can be simply removed. So the line that originally reads:

RES = COMPARE (DATEONLY (RELATIVEASUTC (TARGET .DTSTART)),
DATEONLY (RELATIVEASUTC (REFERENCE.DTSTART))) ;

can be replaced by

RES = COMPARE (DATEONLY (TARGET .DTSTART) ,
DATEONLY (REFERENCE .DTSTART)) ;

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 17

3. Overview

In order to understand a server's or client's configuration, an overview of the basic building
blocks and concepts in the Synthesis SyncML engine is helpful.

3.1 Basic Concepts

The Synthesis SyncML engine performs three conceptually more or less separate tasks:

e Running the SyncML protocol. SyncML is an open industry standard and therefore there are
clear specifications about how the SyncML protocol must be implemented and run. There-
fore, there is not a lot of configuration needed for the SyncML protocol engine itself.

e FEncoding and decoding the data that is synchronized with the SyncML protocol. SyncML
itself is designed to synchronize any type of data, even proprietary, customer-defined types.
However, to make a SyncML server or client interoperable, it must support some standard
datatypes. Today, this includes the widely used vCard format for contact information and
vCalendar for events and tasklists, and a number of RFC(2)822 based email formats for email
synchronisation. Synthesis SyncML products support these standard formats, but they give
the user complete freedom about all the details (you can define a server or client that can
handle 37 phone numbers per contact if this is important in your context). In addition, cus-
tom formats based on plain text, MIME-email or MIME-DIR can be defined. Covering all
the possible options of the vCard/vCalendar formats and even allowing to define new
formats makes the datatype configuration quite complex and big - however in most
applications, it is sufficient to slightly modify one of the provided sample datatypes.

e Interfacing the SyncML data with a server's or client's database. The complexity of this task
depends largely on the type and kind of database. Our text file based demo versions need al-
most no configuration, because the data is simply saved to tab-separated text files. On the
other hand, our ODBC-based products are designed to interface with existing databases,
which requires very flexible configuration options to handle field mapping and data conver-
sions. In most real-world applications, configuration of the database interface is what
needs most attention and customisation.

3.2 Configuration Structure

According to the basic tasks decribed above, the config for a Synthesis SyncML server or client is
structured as follows:

e client and server: General global options, (see 8) such as:
e 2 <debug> section for configuring level of debugging log information
e 2 <scripting> section for defining global scripting functions and macros (only in PRO
versions)
e a <licence> section for entering license codes (not all versions need license codes)

e server only: Configuration of the transport, that is how clients can access the server (see 9)
e server and client: Datatype definitions (see 10). This consists of the following sub-sections:

e one or multiple <fieldlist> sections, which define the internal representation of a data
type as a list of typed fields (or array fields).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 18

e one or multiple <mimeprofile> and/or <textprofile> sections, which define a mapping
between internal fields and a data format based on MIME-DIR (such as vCard or vCal-
endar) or plain text (such as email or notes).

e one or multiple <datatype> sections, which define actual data types based on field lists
and MIME-DIR or text profiles.

e server only: a <server> section which defines the server databases (see 11 and 12)
e client only: a <client> section which defines the client databases (see 11 and 12)

e server and client: the <server> or <client> section contains one or multiple <datastore>
sections which each define a database. The definition provides the necessary mapping
information between the internal fields from the field list and the database itself.
For the ODBC based products this includes all SQL statements needed to read, modify,
insert and delete data as well as a mapping table assigning SQIL-names to internal field
names. For the plugin based datastores, the mapping is between internal field names and
the plugin API data format's names. For both types of datastores, importants settings like
database character set and line end format can be defined here.

e client only: one or multiple <syncrequest> sections which define what databases should be
synced with a server when the client application is started (not available in all client versions).

e server and client: optional <remoterule> sections which define special options for a certain
type of remote SyncML client or server. This is normally used in servers to control device-
specific behaviour.

The order in which the elements appear in the config file does not matter unless a section refers
to definitions in another sections (like <datastore> referencing <field>s, or <datatype>s refer-
encing <mimeprofiles>) - in this case the defining section must appear before the referring sec-
tion in the config file. Generally, we recommend using the order as outlined above (and also used
in the sample config files).

An "empty" server config file looks like this (a client would be similar except that there was a
<client> section instead of the <server> section):

<?xml version="1.0" ?>
<sysync_config version="1.0">

<debug>
<!-- debug options -->

</debug>

<transport type="xxx">

<!-- transport related options -->
</transport>
<datatypes>

<!-- definitions of data types -->
</datatypes>

<server type="odbc">
<!-- definitions of server database access -->
</servers

<remoterule>

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 19

<!-- gpecial rule for some device -->
</remoterule>

</sysync_config>

We recommend to use the sample config file as a starting point, because there are quite complex
parts (especially datatype definitions) which are hard to create from scratch. In many applications,
modest modifications to one of the sample files is sufficient anyway.

3.3 XML basics

The configuration file is formatted in XML, which is a tagged text format. Any text editor (in-
cluding Windows Notepad) can be used to edit XML files. In addition, there are many XML-
aware text editors or specialized XML editors. To view (but not edit) XML files neatly formatted
and colorized, they can be opened with a web browser like Firefox.

We cannot give a real introduction to XML here, but here are just a few notes about XML syn-
tax in case you are not familiar with it already:

e An XML tag consist of text enclosed in angle brackets like:
<this>

e XML tags must always appear in pairs:
<this>something in between</this>

e the "something in between" can be plain text or other paired tags:
<this><that>some text</that></this>

e Instead of writing:
<this></this>
for a tag pair with "nothing in between" (tag with no contents), it can be abbreviated as:
<this/>

e Tags can have attributes:
<this attribute="value" another="value2">
Attribute values must always be enclosed in double quotes.
In Synthesis Sync Server config, tags with attributes are often tags with no contents, so many
config tags might look like:
<this attrl="valuel" attr2="value2"/>
(note the slash at the end)

e XML allows inserting comments. A comment starts with <!-- and ends with -->:
<!-- this is a comment -->

e TFormatting does not matter (except for string values, see below), but it makes XML much
more readable when nested contents are indented like in the sample config files. Most XML
enabled tools do this automatically or have an option for it.

3.4 Synthesis Sync Server Config specific XML usage
A few notes on the way XML is used in Synthesis Sync Server:

e String values: They are used exactly as written in the config file, except that leading and
trailing whitespace is removed first. All other contained spaces, control characters and

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 20

line ends are preserved. So when formatting the XML source nicely, make sure you don't
break strings into muliple lines that should be one line (such as directory paths).

e C-String values: These are strings that are parsed like in the C programming language as
follows: Actual line ends are ignored, but the following escape sequences can be used to
insert special characters into the string:

\t is used to insert a TAB character
\t is used to insert a CR character
\n is used to insert a LF (linefeed) character

\xXX is used to insert the character having an ASCII-code of XX (in hexadecimal).
Note that the octal form \0XX available in the C language is NOT supported.

\\ is used to insert a single backslash character.

e Boolean values: "yes", "true", "on", "1" can be used for true, "no", "false", "off", "0"

can be used for false.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 21

4. Configuration variables and conditional configuration

New in 3.1: Configuration variables (or short "config variables") are a new concept introduced with
the 3.1 SyncML engine to allow parametrizing some values within a config file from "the outside"
without needing to edit the config file itself. Using conditional sections in a config file, the same
file can be used for different setups controlled by configuration variables.

4.1 Sources for values of config variable

There are four sources for these "outside" values:

¢ TFrom the operating environment — these are values like file system paths to various plat-
form specific directories (like temp dir, application dir etc.) or other values like current
user name (see 4.4 for a list).

¢ From the SyncML engine itself — like the version of the SyncML engine

e Supplied from another program or the user: via the -D command line option for stand-
alone SyncML applications or via the "/configvars" settings key when the SyncML engine
is used as a libary with the client or server SDK API — see separate SDK docs for details.

e Tinally, the <configvar> directive (see 8.8) can be used to define config variables in the
config file itself.

The first two sources are predefined by the engine. See 4.4 for a list of commonly supported

configuration variables. Depending on the platform or engine variant, there might be additional
variables predefined (and documented in the specific product documentation).

4.2 Using configuration variables

Configuration variables can be used within many string literals in the configuration using the
syntax $(configvarname).

This syntax is generally recognized in strings that specify file system paths.

In all other tags, the §(configrarname) syntax is not recognized by default, but can be switched on
using the "expand" attribute (see 4.3).

In XML tag attributes, the $(configvarname) syntax is usually not supported, however there are
exceptions such as the <configvar> tag, see 8.8.

By default, expansion of config variables is recursive, which means that if the value of a config
variable contains another §(configrarname), this is expanded as well. To avoid recursive expansion,
the "expand" attribute (see 4.3) can be set to "single".

Note: before version 3.2.0.11, expanding tags with pure numeric, enumerated or timestamp val-
ues was not supported. From 3.2.0.11 onwards, $(configname) expansion works for all tags (but

for most tags only if the "expand" attribute is set, see above).

Contfig variables can also be used to control conditional configuration (see 4.5).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 22

4.3 "expand” attribute

All tags that support configuration variable expansion (see 4.2) can have a "expand" attribute to
control if and how to expand §(configparname). Possible values for "expand" are:

e "no":do not expand

e 'single" : expand once, but do not try to expand result again

e 'yes":expand recursively.

4.4 Predefined Configuration Variables

The following list contains the configuration variables generally available in most Synthesis
SyncML products. Depending on the platform or engine variant, there might be additional vari-
ables predefined (and documented in the specific product documentation).

version
hexversion

manufacturer

model

platformname
platformvers
globcfg path
loccfg _path
defout_path

temp_path
exedir_path
userdir_path
appdata_path
prefs_path
device_uri

device_name
user_name
conferrpath

Version string of the Synthesis SyncML engine, like "3.4.0.0"
Synthesis SyncML engine version as 32-bit hex like MMmmssbb
(MM=major, mm=minot, ss=subversion, bb=Dbuild).

Manufacturer string that is also communicated to remote parties in
the SyncML device Information. For Synthesis SyncML engine library
products, this can be configured using the <manufacturer> tag (see
8.6).

Model (product name) string that is also communicated to remote
parties in the SyncML device Information. For Synthesis SyncML en-
gine library products, this can be configured using the <model> tag
(see 8.7).

name of the current OS platform (like Windows, Linux, iPhoneOS...)
version string of the current OS platform (like "5.1.1732")

global system-wide config path (such as C:\Windows or /etc)

local config path (such as exedir or user's dir)

default path to writable directory to write logs and other output by
default

path where we can write temp files

path to directory where executable resides

path to the uset's home directory for user-visible documents and files
path to the uset's preference directory for this application

path to directory where all application prefs reside (not just mine)
URI of the device (usually unique ID or URL identifying the device
or server)

Name of the device (like a model or brand name)

name of the currently logged-in user

for Synthesis SyncML engine library only: path of the file to output
configuration parsing error messages. Can be set to "console" to di-
rect the error messages to the standard output (note that a usable
standard output might not exist for certain platforms).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 23

4.5 "ifdef/ifndef/if"’ conditional attributes

New in 3.1: These attributes are available in every XML tag and can be used in a similar way as
the "platform" attribute (see 4.6) to make sections of the configuration dependent on certain
conditions:

e 'ifdef": used in the form <sometag ifdef="configvarname"....>. This will conditionally in-
clude <sometag> and all tags contained only if "configvarname" is an existing config variable.

e ifndef": same as "ifdef", but condition reversed — config variable must not exist to include the
tag in the config.

e "if": used in the form <sometag if="configvarname=value" ...>. This will compare the config
variable with the specified value. Allowed comparison operators are "=", ">" "<" "="
">=""<=".The comparison is a string comparison, except when comparing the "version"
variable, which is compared such that "newer version > older version" is always true (which
would not always be the case with string comparison).

4.6 "platform"” conditional attribute

Usually, a Synthesis SyncML server or client configuration file is largely platform independent.
However, some specifications, such as file paths, are always platform dependent. Since version
2.9.8.5, every tag can be made platform-specific by adding a platform="xxx" attribute. xxx can be
"win32", "linux" or "macosx" at this time. Tags having a platform attribute are only evaluated on
the specified platform.

This allows using a single config file for multiple platforms. For example, the debug log path usu-

ally varies depending on the platform:

<logpath platform="win32">C:\logs\syncml</logpath>
<logpath platform="linux">/var/log/syncml</logpath>
<logpath platform="macosx">/private/var/log/syncml</logpath>

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 24

5. Time zone handling

With the Synthesis SyncML engine 3.1, a completely revised time zone handling has been
implemented that allows much more flexibility than before, and allows handling time zone
association with timestamp information down to the single field level.

Note: For setups designed for SyncML engine before 3.1, the new engine behaves fully
compatible when used with existing 3.0 configuration file, with the exception of a few rarely used
scripting functions (LOCALIZEDASUTC, RELATIVEASUTC, UTCASRELATIVE,
LOCALZONEOFFSET, SETZONEOFFSET, ISRELATIVE and SETRELATIVE) which are
no longer available. In config the 3.0 engine config samples, RELAVTIVEASUTC is used twice,
which can be simply removed as the new timestamp representation makes the use of
RELATIVEASUTC functionally obsolete.

5.1 Timestamp representation

Timestamp fields consist of two parts:

e The timestamp value itself (internally represented as 64bit integer counting milliseconds
passed since -4712-01-01 00:00:00 on most platforms). When a timestamp is converted e.g.
from a string representation into internal format, the timestamp represents date and time ex-
actly as found in the input, regardless of eventual time zone information. This is the key dif-
ference between Synthesis SyncML engine 3.0 and 3.1 timezone handling —in 3.0 and
earlier, timestamps were always converted to UTC.

e The time zone context where a timestamp value belongs to or originates from. The context
is either a plain numeric offset from UTC (like: 1 hour east of UTC, which applies for exam-
ple for Zirich local winter time), or it can be in symbolic form which handles winter and
summer (daylight savings) time (like "CET/CEST" meaning Central European Time and
Central European Summer Time, which is 1 hour east of UTC in winter, and 2 hours in
summer).

Timestamps that are not associated with a specific time zone are called floating timestamps.
Date-only values are normally floating, as they usually refer to a specific calendar day and
not a absolute point in UTC time.

External string representations for timestamps sometimes include time zone information (like
the "Z" in ISO8601 UTC format: 20071212T110000Z or an explicit offset like in
20071212T120000+01) . Sometimes, external representation does not include time zone in-
formation directly, but timestamps are still implicitly meant in a specific time zone context,
like the system's current time zone for example). Therefore it is important to understand
what different implicit time zone contexts exist within a SyncML session and how timestamp
values are affected by "travelling" through these contexts.

5.2 Timezone contexts

The Synthesis SyncML Engine 3.1 and later maintains the following time zone contexts, ordered
starting with most general and global context and ending with most specific context:

e System time zone context. This is the time zone set in the operating system which runs the
SyncML engine. It can be referenced by name by the string "SYSTEM". Usually, the
parameters (offset and daylight saving switching rules) are obtained from the operating

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 25

system automatically. It can be overridden by using the <systemtimezone> configuration tag
(see 8.14).

e Datastore time zone context. This is a per-datastore time zone context which is used for all
timestamps stored in the database. This means that timestamp values are converted from
their original timezone context to the datastore time one context before storing them in the
database. Vice versa, timestamps read from the database are implicitly treated as originating in
the datastore time gome context. An exception to this are timestamps mapped to the database
using the "f" (floating) mode flag in the <map> tag (see 11.34.41.1) — these are always stored
as-is (which can make sense if the actual time zone is stored along with each timestamp in a
separate database field using the "zonename" or " zoneoffset_xxx" mapping types).

The datastore time zome context to be used for a datastore is specified using the <datatimezone>
tag (see 11.34.31). For compatibility with pre-3.1 configuration files <timeutc> (see 11.34.30)
is still supported but no longer recommended — use <datatimezone> (see 11.34.31) instead:
timeutc=true is equivalent with datatimezone=UTC and timeutc=false is equivalent with
datatimezone=SYSTEM).

e User time zone context. Each user of a SyncML application thinks of his or her calendar
entries in the context of a time zone. Calendar applications and web sites use this time zone
to display timestamps, and usually input of new calendar entries is meant in that time zone as
well. This general fact gains technical relevance with SyncML devices that are not capable of
receiving and sending timestamps in a time-zone independent way (usually UTC). When
communicating with such a device, the SyncML application must know implicitly in what
timezone context transmitted timestamp values are meant. By default (and generally in
Synthesis SyncML engines before 3.1), this user time gone context is the same as the local time
zone of the operating system. While this is usually correct for single user mobile devices, it
might not be sufficient for a multi-user server. To allow individual time zone context per
user, Synthesis SyncML Engine 3.1 adds the <usertimezone> configuration tag (see 11.22)
and especially the SETUSERTIMEZONE() (see 6.14.4) script function, which allows setting
the wuser time gone context based on user-level information retrieved at login (see
<logininitscript> and <loginfinishscript> in 11.33 or <logincheckscript> in 12.17).

e Item time zone context. For each item (such as a vCalendar item) processed by the
SyncML engine, the item time 3one context is initialized with the wuser time 3one context, which
means that timestamp data which has no timezone information attached is treated as related
to the wuser time gone context. However, if a item carries time zone information (for example
vCalendar TZ/DAYLIGHT), this modifies the #em time zome context accordingly, and any
timestamp found in the item which does not have its own specific time zone will be
subsequently treated in the zem time zone context. Vice versa, the item time one context might be
used (depending on rules defined by the content format) to represent timestamps when
generating items like vCalendar.

¢ Field level time zone context. Each timestamp which "travels" from SyncML end to the
database end trough the SyncML engine has its own time zone context associated. When
reading a item from SyncML content formats like vCalendar, the fe/d level time zone context is
either read as part of the timestamp string representation (e.g. TZID parameter in iCalendar)
or copied from the stem time one context. When writing the timestamp to the database, it is
usually converted to the datastore time Zone context (if <map> mode flag """ is not used, see
11.34.41.1) Vice versa, timestamps read from the database receive either a individual time
zone from a "zonename" <map> (see 11.34.41.1) or are put into datastore time one context.
Before data is converted to SyncML content formats like vCalendar, timestamps are
converted to user time gone context (except if <userzoneoutput> is set to false, see 11.34.32).
The built-in script language offers various built-in functions to access and manipulate the fre/d
level time Zone context.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 26

5.3 Time zone specifications

Time zones can be specified in different ways:

By name: The SyncML engine has a built-in list of world-wide time zones which can be ref-
erenced by name. Well known timezone name examples are "UTC", "PST", "CET". If a
timezone has daylight savings, it can be referenced either by the standard time zone name, the
daylight savings zone name or a combination of both: "PST", "PDT" and "PST/PDT" all
reference Pacific time; "CET", "CEST" and "CET/CEST" all reference Central European
Time. Some zones have more descriptive aliases like "Pacific", some have variants with differ-
ing daylight savings rules like "Pacific_Mexico" etc. The TIMEZONE script function (see
0.14.4) returns the time zone name of a given timestamp.

For a complete list of built-in time zones see chapter 17.

A number of special time zone names are supported as follows:

e SYSTEM — means the local time zone of the operating system (eventually overridden
with <systemtimezone> see 8.14).

e DATE — means a floating date-only value.

e FLOATING — means that the timestamp is not related to any time zone in particular.

e USERTIMEZONE - can be used in script functions like SETTIMEZONE (see 6.14.4)
to apply the wser time zone context active for the current user in the current sync session.

By VTIMEZONE specification: New timezones can be added to the built-in list using the
VTIMEZONE format (as defined in iCalendar, RFC 2445). This can be done statically in the
configuration (<definetimezone>, see 8.15) or dynamically in scripts using script functions
like SETTIMEZONE (see 6.14.4) which can accept VIIMEZONE input to specify a time
zone. New timezones are also created implicitly when receiving vCalendar items containing
VTIMEZONE specifications that do not match one of the already defined time zones. The
VTIMEZONE script function (see 6.14.4) returns the time zone of a given timestamp as a
VTIMEZONE record.

By TZ/DAYLIGHT specification: New timezones atre also added implicitly when receiv-
ing TZ/DAYLIGHT properties in vCalendar 1.0 items (using the special "tz" and "daylight"
conversion modes, see 10.3.4).

As numeric offset: This is generally not recommended, as most time zones do not have the
samm offset all year long but change between standard and daylight savings time, so a nu-
meric offset only applies for a single specific time stamp value and cannot be used generally
for other timestamps in the same zone.

Numeric time zone offsets are accepted as part of timestamp formats like ISO8601 or
RFC822 (email time stamps), or as input to script functions like SETTIMEZONE (see
0.14.4) when used with numeric arguments.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 27

6. Scripting Language

The PRO versions of the Synthesis SyncML engine feature a built-in, highly efficient, C-style
syntax scripting language that extends flexibility in adapting to even exotic database layouts far
beyond what is possible with the standard version. It allows for example to code value transla-

tions that are more complex than simple 1:1 translations (which can be done with <enum>s, see
10.3.5).

This chapter describes the script language in general. Scripts can be defined at many points within
the configuration to customize many aspects of handling data, database access, data matching
algorithms etc. These places where a script can be used within the configuration is described to-
gether with the related configuration section.

Note that this chapter assumes basic knowledge of C or a C-like syntax language (for example
JavaScript).

6.1 What can be scripted?

There are various possibilities to use scripts to customize processing of a synchronisation opera-
tion (a so called sync session). For each possibility, a "hook" exists to insert your custom code in
the form of a <xxaaexscript™> configuration tag, where xxaxex describes the action or process that
can be customized. These scripts are executed in various different contexts (see 6.8 for details).
This is important to understand as every context has it's own scope (local variables, lifetime, con-
text script functions that can be accessed).

To get an overview of what scripts exist in what contexts, please refer to the
"SySvnc_script call flow.pdf" diagram (separate PDF document).

6.2 Embedding script source code in XML

All script source is embedded in the configuration file as text between XML tags like:

<testscripts>
// this is a script
integer x;
</testscripts>

However, as scripts often contain greater-than and less-than signs (< and >) and maybe amper-
sands (&) which have a special meaning in XML, we strongly recommend to use the XML
CDATA bracket to enclose scripts, as follows:

<testscript><! [CDATA |
// this is a script that can safely contain <, > and &
integer xX,v,2z;
X =Y > 2z && z<100;

11></testscripts>

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 28

6.3 Comments

The script engine supports both forms of ANSI-C style comments, that is
e Any sequence of characters starting with /* and ending with */
e Any sequence of characters starting with // and ending with a line end

6.4 Statements and Statement Blocks

A statement is either a simple statement terminated with a semicolon (;) or it is a statement block.
Statement blocks are multiple statements enclosed in { and }. Note that empty statements are
allowed (consisting of a semicolon only)

// simple statement
a = b;

// statement block

{

b; // first simple statement
d; // another simple statement

a
C

}

// empty statement

I

6.5 Identifiers

Identifiers identify language keywords (such as IF, ELSE etc.), symbolic constants, variables and
functions. Identifiers always start with an alphabethic character, and otherwise consists of any
number of alphanumeric characters or underscores (_).

Note that identifiers in scripts are not case sensitive (unlike in C)!

6.6 Data types

The built-in script language uses exactly the same base datatypes that are also available for fields
in a <fieldlist> definition (see 10.2 for details). All datatypes are either integer or string based.
There is no floating point data type. Note also that despite the similarity with C, the basic types
known from C are not available (neither char nor int).

6.7 Constants/Literals

There are three basic types of literal constants:

¢ Integer constants: an optional minus sign "-" followed by digits "0".."9". From version 3.1
onwards C-style hexadecimal (0x...) integer syntax is supported (but not octal (0...) integer
syntax).

¢ Quoted string constants: Any text surrounded by double quotes. Within the quotes, only
"\" (backslash) has a special meaning: it causes the following character to be added to the

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 29

string unprocessed, for example a doublequote or the backslash itself. Note the following
special escape sequences:
e "\n" stands for a line end
e "\t" stands for a tab
e "\xNN (where NN is a two-digit hexadecimal number) stands for the character with the
ASCII-Code equivalent to NN.

¢ Date and time constants in ISO8601 basic format such as 20030604T164922 or
200306041449227 (see ISO8601 specs if you need more details). Note that if the ISO8601
constant expression contains + or -, it must be quoted like a string constant.

There are also the following special symbolic constant values:

e TRUE (synonymous to a constant integer of 1)

e FALSE (synonymous to a constant integer of 0)

e EMPTY: This is a special "value" all variables can have and means that the variable has no
value.

e UNASSIGNED: This is almost the same as EMPTY, but for data item fields, it has the ad-
ditional meaning of "this value has not been assigned, not even with an EMPTY value". This

is useful to distinguish values that were transmitted from the remote SyncML device with an
empty value (==EMPTY) from values that were not transmitted at all (==UNASSIGNED).

6.8 Script contexts

All scripts run in a specific seript context. For example, there is a "login context", a "session con-

text", "datatype contexts" etc. A script context can be thought of as an execution environment

that is (mostly) isolated from other script contexts and has the following properties:

® One or several scripts that belong to the script context and are executed within the environ-
ment that this context represents. Which scripts belong to what context is described where
the script's tag in other chapters of this reference manual.

e A lifetime. For example, the "session context's life time is the entire sync session, whereas a
database mapping script context's life is only as long as database access takes place.

o Context variables (these are defined by the scripts, see 6.9 below). These are values that are lo-
cal to the script context and can be accessed only by scripts in the same context.

e None, one or two (but not more) data items. A data item represents the data in an object being
synced by the SyncML engine, such as a vCard or vCalendar. However, the data item is 7of
the vCard itself, but its internal representation which consists of a list of fields as defined by a
<fieldlist> (see 10.1).

e A number of context built-in functions. These are built-in functions that do make sense only
within this special script context and are not available in other script contexts (as opposed to
global butlt-in functions (see 6.13.2) which are available in all scripts).

6.9 Variables

Variables in scripts are technically the same internal objects as fields in a <fieldlist> (see 10.2).
Variables can be assigned values (using the = assignment operator) and values stored in variables
can be used in expressions (see 6.10)

Within scripts, there are three basically different kinds of variables - where the difference is in the
way they come into existence (scope) and the syntax used to access them.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 30

6.9.1 Context Variables

These are variables declared in one of the scripts that belong to a script context. Note that all vari-
ables must be declared before being used. Variables can be of any of the basic datatypes (see 6.6)
or dynamic arrays thereof (always with empty square brackets, specification of a size is neither
needed nor allowed):

// declaration of simple variables

integer mynumber, yournumber; // two integers

string s; // a dynamic string

telephone tel; /* also a dynamic string, but with tele-
phone-number comparison rules */

timestamp t; // a timestamp

// declaration of dynamic arrays
string mynamelist[]; // an array of strings
integer 1[]; // an array of integers

Note that all context variables declared in any of the scripts belonging to the same context are acces-
sible in a// scripts belonging to this context regardless of when (or whether at all) the scripts con-
taining the declarations are executed. Therefore, it is sufficient to declare context variables in ozne
script belonging to a context (altough redeclaration is allowed as long as the type of a variable is
the same in all declarations).

To explicitly access context variables in script expressions when there are field variables having the
same name the name can be qualified with a "local." prefix, but this is only for documentation
purposes (as a context variable always override feld variables with the same name):

// accessing a context variable
integer a,b; // two integers

// normal access
a = b;

// with qualifier prefix for documentation
local.a = local.b;

6.9.2 Local variables of a user-defined function
Variables declared in user-defined functions (see 6.13) are local to the function, and not to the

script context where the function is called. Otherwise, local variables in user-defined functions
are declared and used like script context variables.

6.9.3 Field variables

In script contexts that have associated data itemss (see 6.8 above) the fields of the data items can be
accessed as follows:

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 31

e The field of the so called Zarget data item (also called new or winning item, depending on the
context) can be accessed by the field name alone (if there is no context variable with the same
name) or with any of the (synonymous) prefixes "new.", "winning.", "target.".

e The field of the so called reference data item (also called o/d or loosing item, depending on the
context) can only be accessed by using one of the (synonymous) prefixes "old.", "loosing." or

"reference.".

/* assuming there is no context variable DTSTART we can
access the DTSTART of a vCalendar like: */

t = DTSTART;

/* to make sure we get the field, and not a context vari-
able: */

t = TARGET.DTSTART;

/* 1f there are two data items involved (for example when
comparing or merging items: */

if (NEW.DTSTART<>OLD.DTSTART) { /* do something */ }

Note that in some contexts, it might be that data items (one or both) cannot be written, such that
assigning values to field variables is not allowed (for example in the <comparescript>).

6.9.4 Array variable references

Array variables are always one-dimensional, dynamically sized arrays of simple variables. The
elements can be accessed by a zero-based index expression in square brackets like:

// declaration
integer a,myarrayl];

// accessing array elements
a myarray[0]; // first element
b myarray[7]; // 8th element

In addition there is a special form of array index that can be used to access fields in a field list
(see 10.1) by index instead of by name. This special form of array index starts with a + sign as the
first character after the opening [as shown in the following example:

<!-- a sample field list -->

<fieldlists>
<field name="NAME" type="string"/>
<field name="TEL 1" type="telephone"/>
<field name="TEL 2" type="telephone"/>
<field name="TEL 3" type="telephone"/>

</fieldlist>

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 32

/* sample script to access the telephone numbers by index
instead of by name */

integer i;
telephone a,b,c;

a = TEL _1[+0]; // this is the same as: a=TEL 1
b = TEL 1[+1]; // this is the same as: b=TEL 2
c = TEL 1[+2]; // this is the same as: c=TEL 3

As this special form is dependent on the field order in the field list, it's use is only recommended
when this can be guaranteed.

6.10 Expressions

Expressions are built as follows (much like C, but not all operators of C available):

An expression consists of a single zerz or multiple zers linked together with one of the gperators.

A term 1s either an expression enclosed in parantheses, a constant (see 0.7), a variable reference (see
0.9 and 6.9.4) or a function call (see 6.13). A term can be optionally preceeded by a #ypecast.

A typecast is a type name enclosed in parantheses, like: (integer)a. It's effect is that the term it
preceedes is converted to the type specified.

Operators are the following, in the order of precedence:

e Unary minus (-), unary logical NOT (!) and unary bitwise NOT (~).
e Multiply (*), divide (/) and modulus (%o)

¢ Add for numbers or concatenate for strings (+) and subtract (-)
e Shift left (<<) and shift right (>>)

e Comparison operators (>, <, >=, <= ==1=)

e Bitwise AND (&)

e Bitwise XOR (%)

e Bitwise OR (])

e Logical AND (&&)

e Togical OR (] |)

Note that all operators except + need numeric (integer or timestamp) operands. If operands
are not numeric, they will be implicitly converted.

6.11 Flow control

The script engine supports the following flow control mechanisms:

IF (conditional_expression) statement. statement is executed if conditional_expression returns
non-zero result.

IF (conditional _expression) statementl ELSE statement2: statement] is executed if condi-
tional_expression returns non-zero result, otherwise, statement2 is executed.

IF (conditional expressionl) statementl ELSE IF (conditional_expression2) state-
ment2.... ELSE statement. Chained if-else; the last statement is only executed if none of the
previous IF conditions were true.

LOOP statement. This is a general loop mechanism (there is also a while statement, but no
Jfor/ do as in C). It causes statement (which is normally a statement block) to be repeated forever.
Therefore, the statement (block) must contain at least one BREAK statement to exit the loop.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 33

It can also contain CONTINUE statements to jump to the beginning of the loop. To pre-
vent the SyncML engine to hang in case there is an infinite LOOP in a script, any LOOP that
takes more than the number of seconds defined in <looptimeout> (see 8.10.3, default is 5
seconds) aborts the script execution with an error.

e WHILE (conditional _expression) statement. New in 3.1: This causes statement (which is
normally a statement block) to be repeated as long as conditional_expression is true. The statement
(block) may contain BREAK statements to exit the while loop or CONTINUE statements to
jump to the beginning of the while loop. To prevent the SyncML engine to hang in case there
is an infinite WHILE in a script, any WHILE that takes more than the number of seconds
defined in <looptimeout> (see 8.10.3, default is 5 seconds) aborts the script execution with
an errof.

e RETURN or RETURN expression. This statement can be used to terminate the script
and optionally return the specified expression to the caller (whether this makes sense, depends
on the script's purpose and is described in the other configuration chapters).

Some examples:
integer a,b;
string s;
a=5;

b=2;

// exit script if a is equal b
if (a==b) return false;

// loop 5 times

a=5;

loop {
if (a<=0) break;
a=a-1;

}

// chained if/else

if (a==1) s="one";
else if (a==2) s="two";
else if (a==3) s="three";

else s="out of range";

6.12 Macros

Since version 2.9.8.12, the scripting engine also supports macros. Macros are texts (usually
consisting of one or more script statements) that are defined once in the <scripting> section of
the config and can then be inserted into any script by name.

The sample config makes use of macros to avoid duplication of some lengthy scripts required in
serveral different email datatypes.

6.12.1 Defining Macros

Macros are defined in the <scripting™> section using the <macro name="macroname"> tag. The
macroname must be unique among all macros and is used to reference the macros in scripts. Like

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 34

with scripts, using the XML <I[CDATA] ...]]> bracket around the actual macro text prevents
problems with special XML characters like <,> and & and is strongly recommended.
6.12.2 Marco arguments

New in 3.4: Macros can have up to 9 arguments. Use $1, $2 ... $9 in the macro definiton as
placeholders where arguments should be substituted.

6.12.3 Using Macros

Macros can be used (inserted) in scripts simply by a dollar sign followed by the macro name. See
the following example:

<scriptings>
<macro name="MYMACRO"><! [CDATA [
integer a,b,c;
a = b;
c = b*5;
11 ></macro>
</scripting>

... other config tags ...

<initscripts>
$SMYMACRO
d=c¢c + 1;

</initscripts>

This is equivalent to the following script:

<initscripts>
integer a,b,c;
a b;
c b*5;
d c + 1;
</initscript>

If the macro definition contains placeholders for arguments ($1,32...89), see 6.12.2, the macro
invocation should provide arguments in parantheses:

<scriptings>
<macro name="MYMACRO"><! [CDATA [
f = b*3$1; // macro argument
11 ></macro>
</scripting>

... other config tags ...

<initscripts>

integer b, £f;

SMYMACRO (7) // macro call with one argument
</initscripts>

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 35

6.13 Functions

Functions are called using their name, followed by a comma-separated list of parameters in
parantheses. Functions that have no parameters are called just with empty parantheses. Some
functions return a value, which can be used in expressions:

integer 1;
string s;
timestamp t;

// function that returns a value and has one parameter
1 = length(s);

// function that returns a value and has no parameter
t = now() ;

// function with more than one parameter
1l = find(s,"x",0) ;

6.13.1 User defined Functions

User-defined functions must be defined in the <scripting> section of the config file using a
<function> tag for every function to be defined.

The function definition starts with the type of the return value (if the function has a return value),
followed by the function name, followed by a parameter list in parantheses, followed by a statement
block that contains the function's code. Functions can return a value to the caller using the
RETURN statement.

The parameter list can be empty for functions without parameters, or contains one or multiple
comma separated parameter declarations.

A parameter declaration is like a variable declaration (see 6.9.1) and consists of a type name followed by
the parameter name. This declares a parameter that is passed by value (which means that the
value specified when calling the function is stored in a local variable of the function, which can
be modified by the function code, but does not affect any variables of the caller).

Optionally, parameter passing can also be declared as "by reference" by preceeding the parameter
name with an ampersand. This means that the caller of the function must specify a variable
(rather than a constant or an expression) for the parameter. If the function code assigns a new
value to the parameter, the caller's variable will be changed.

<scriptings>

<function><! [CDATA [
// function with one by-value parameter
integer decremented(integer a)
{
// this only changes the local variable "a".
a=a-1;

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 36

// changed local "a" is returned as function result
return a;

}

11></function>

<function><! [CDATA [
// function with one by-reference parameter
decrement (integer &a)
{
// this changes the caller's variable that
// was passed for the parameter "a"
a=a-1;

1]1></functions>

<function><! [CDATA [
// function with two parameters
string rightmost (string s, integer n)
{
// call built-in function substr to extract
// n rightmost characters from s
return substr(s,length(s)-n,n);

}

11></function>

</scripting>

6.13.2 Built-in Functions

A number of useful functions are built into the script engine. They can be called exactly like user-

defined functions.

There are two types of built-in functions

¢ Global built-in functions: These are generally useful functions that are available in all
scripts. See 6.14 for a list.

e context built-in functions: These are special functions that are only available in a specific
context. These functions are described along with the scripts where they are valid. See section
0 for a list of all function names (global and context-specific).

6.14 Global built-in Function Reference

This section lists script functions that are available in all script contexts. Note that there are many
more script functions available in some specific script contexts — these are described with the
<xxxxscript> tag they apply to. See section 0 for a list of all function names (global and context-
specific).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 37

6.14.1 String functions

integer LENGTH ((expression): returns the length of expression. The result is the number of
bytes in the string representation of expression. Note that due to UTF-8 encoding
(multi-byte representation of characters outside 7bit ASCII range) the number of
characters might be less than the number of bytes. Note that (unlike stated in ear-
lier versions of this document) LENGTH cannot be used to determine the
size of an array. Use SIZE() instead.

integer SIZE (var): returns the size of var. If varis an array, the result is the number of elements
in the array. If varis a single value (a non-array or an array element), the result is the
number of bytes in the string representation of »ar. Note that due to UTF-8 encoding
(multi-byte representation of characters outside 7bit ASCII range) the number of
characters might be less than the number of bytes. Note that SIZE cannot be used
to determine the length of a string expression. User LENGTH instead.

string LOWERCASE (string str): returns an all-lowercase version of s#.
string UPPERCASE (string str): returns an all-uppercase version of sz

string NORMALIZED(string str): returns normalized version of s#. Normalized has only a
meaning for string-based types such as simple string (New in 3.1: normalized form is
spaces trimmed off at start and end) telephone number (normalized form is number
without all separator and spacing characters) or multiline (normalized form is text
without leading or trailing empty lines and spaces).

integer FIND(string str, string pattern, integer start): searches for first occurrence of pattern
in str, starting the search at szart (O=first character). Returns UNASSIGNED if pattern
not found, otherwise returns the position of pattern in str (0=at the beginning)

integer RFIND(string str, string pattern, integer start): searches backwards for first occur-
rence of pattern in str before start (O=first character). Returns UNASSIGNED if paz-
tern not, otherwise returns the position of pattern in str (0=at the beginning)

string SUBSTR(string str, integer start, integer count): returns substring of s# which starts at
position szart in strand has at most count characters.

string NUMFORMAT (integer num, integer digits [,string filler="" " [, string opts=""]]):
formats the number specified in #um as a string with digits number of digits or spaces.
If digits is negative, the output is left justified, otherwise it is right justified. If filleris
specified empty, no padding will occur, otherwise fi/fer is used to pad unused space to
make the result digi characters long. Opfs can be set to '+' to force a positive sign to
be shown, or to ' ' to force a space to be shown for positive numbers. With no op#s,
negative numbers are prefixed by a '-', positive number have no prefix. If gptscontains
'x', the number is formatted in hexadecimal.

string EXPLODE(string glue, &parts[]): returns the elements of the parts array passed con-
catenated as a string, elements separated by glue.

integer PARSEEMAILSPEC(string emailspec, string & name, string & email): Parses enail-
spec as a RFC2822 email address and puts the descriptive name into zame and the
plain email address into ezail.

string MAKEEMAILSPEC(string name, string email): Makes a RFC2822 email address out
of name and email (quoting name if required).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 38

6.14.2 Regular Expression functions

Note that regular expression support may not be compiled into all versions of the Synthesis
SyncML engine, and therefore the following functions may not be available.

The pattern string in the following functions can be of the "/rrrr/00" form, where rrer is the regu-
lar expression and oo are one or multiple options (1,m,s,x,U supported). Alternatively, a regex can
be specified directly without delimiters, as long as it does not start with a /.

Please refer to general documentation about regular expressions for information about how to
work with regular expressions. The regular expression engine used in Synthesis SyncML engine is
PCRE which is documented in the internet at http://www.pcre.org/.

integer REGEX_FIND(string subject, string pattern [, integer startat]): searches for first
occurrence of pattern in subject, starting the search at startat (O=first character). Re-
turns UNASSIGNED if no match is found, otherwise returns the position of where
pattern matches in subject (0=at the beginning).

integer REGEX_MATCH(string subject, string pattern, integer startat, string
& matches[]): searches for the first match of pattern within subject, starting the search
at startat (O=first character). Returns UNASSIGNED if no match is found, otherwise
returns the position of the match. Additionally, the matches array will contain the en-
tire matched string in its first element, and paranthesized subpattern matches within
pattern in the subsequent elements. If a non-array is passed for matches, that variable is
assigned either the entire matched string (if pattern does not specify subpatterns) or
the first subpattern (if pattern does specify at least one subpattern).

integer REGEX_SPLIT(string subject, string separatorpattern, string & elements [, boo-
lean emptyElements)): Splits subject into string elements and store them in elezents.
The string is split where separatorpattern matches in subject. 1f emptyElements is set to
ture, elements consisting of nothing (i.e. two separators in succession) will be stored
as such in elements, otherwise empty elements will be ignored.

string REGEX_REPLACE(string subject, string pattern, string replacement [, integer
startat [, integer repeat]]): Replaces matches of pattern within subject with replacement.
Pattern matching starts at sfartat in subject (default = 0) and continues repeat times (de-
fault = 0 which means all occurrences are replaced).

6.14.3 Date and Time functions

timestamp NOW(): returns the current time of the SyncML server in UTC. Note that the data-
base time might not be fully in sync with this. Use DBNOW() if you need accurate
database time.

timestamp DBNOW(): returns database's current time in UTC. Note that calling this function
will cause a database access, so use it with care to avoid performance degradation.

timestamp SYSTEMNOW(): returns the current time of the SyncML server in the system's
local time. Note: while this is usually a shortcut for
CONVERTTOZONENOW!(),"SYSTEM"), there might be implementations that
do not have time zone support at all. In these implementations, NOW/() would not
return a proper value, but SYSTEMNOW() will.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

http://www.pcre.org/

Page 39

SLEEPMS(integer milliseconds): suspends the current thread for the given number of milli-
seconds. Accuray depends on the platform, not all platforms support millisecond
resolution for sleeping, so actual time might differ.

timestamp DATEONLY (timestamp ¢s): returns the date part of # as a date-only value (which
corresponds to a floating timestamp with a 0:00:00 time part). However, a date-only
value has a special flag set to differentiate it from a timestamp, which is used for ex-
ample when rendering time/date values in ISO8601 (for example, in the "autodate"
conversion mode for vCalendar items, see 10.3.4).

timestamp TIMEONLY (timestamp s): returns the time part of # as a time-only value (which
is the number of time units since midnight).

integer ISDATEONLY (timestamp #s); returns true (1) if #is a date-only value.

timestamp DURATION (timestamp ts): returns the timestamp as a duration. Duration time-
stamps are rendered in the ISO8601 duration format. The timestamp's internal value
will not be affected by the conversion to duration format.

timestamp POINTINTIME (timestamp ts): returns the timestamp as a point in time. This is
useful to convert duration timestamps back into timestamps that represent a point in
absolute time, and ate rendered in ISO8601 date/time format. The timestamp's in-
ternal value will not be affected by the conversion to a point in time.

integer ISDURATION (timestamp £s); returns true (1) if #is a duration value.

integer WEEKDAY (timestamp #s): returns weekday of day represented by # (0=sunday,
1=monday ... 6=saturday).

integer SECONDS(timestamp #s): returns number of seconds corresponding to # (which
makes most sense if 7 is a difference between two timestamps, that is, a duration).

integer MILLISECONDS(timestamp ¢s): returns number of milliseconds corresponding to #s
(which makes most sense if # is a difference between two timestamps, that is, a dura-
tion).

integer TIMEUNITS(integer seconds): returns number of time units (normally milliseconds,
but can be another unit depending on platform capabilities) corresponding to the
specified number of seconds. Time units can be added or subtracted from time
stamps.

integer DAYUNITS(integer days): returns number of internal time units (normally millisec-
onds, but can be another unit depending on platform capabilities) corresponding to
the specified number of days. Time units can be added or subtracted from time
stamps.

integer MONTHDAYS(timestamp date): returns number of days of the month date is in.

integer ALLDAYCOUNT (timestamp start, timestamp end [, boolean checkinusercontext
[, boolean onlyutcinusercontext]]): This functions examines the szar# and end time-
stamps to check if these represent an all-day event, and if so, how many days it spans.
This function is designed to operate on vCalendar 1.0 and iCalendar 2.0 DTSTART
and DTEND values, and takes into account that in vCalendar 1.0 All-day events
cannot be represented as such, but just as events starting at midnight, and ending at
next midnight or 23:59. If the result is 0, sza7¢ and end do not specify an all-day event,
otherwise, the result is the number of days. The input timestamps must be in the
context in which they are to be checked for midnight, 23:59:xx etc. except if checkut-
cinusercontext ist set. If so all non-floating timestamps (onlyutcinusercontext = false) or all

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 40

UTC timestamps (onlyutcinusercontext = true) will be converted to user time zone be-
fore checking for all day boundaries.

MAKEALLDAY (timestamp &start, timestamp &end [,integer days]): This function is de-
signed to adjust szart and end suitable for using it with the "autodate" and "autoend-
date" conversion modes (see 10.3.4). If days is omitted or set to <=0, the difference
between end and start determines the number of days. If days is set to >0, the input
value of end is ignored, and an all-day of days days length is created starting at start.
On input, timestamps must already represent local day times. On output, the time-
stamps are made floating.

timestamp RECURRENCE_DATE((timestamp start, string rr_freq, integer interval, in-
teger fmask, integer Imask, boolean occurrencecount, integer count): Returns
the date of the countth iteration of a recurrence rules. If occurrencecount is true, the
countth occurrence is calculated, otherwise the countth repetition of the entire rule in-
terval (the latter is relevant for vCalendar 1.0 RRULE #n repetition value). See 10.6
for a description of the start, rr_freq, interval, fmask and /mask parameters.

integer RECURRENCE_COUNT (timestamp start, string rr_freq, integer interval, inte-
ger fmask, integer Imask, boolean occurrencecount, timestamp occurrence):
Returns the count of a given occurrence date relative to the beginning of a recurrence
rule. If occurrencecount is true, the count returned is the occurrence count, otherwise it
is the repetition count of the entire rule interval (the latter is relevant for vCalendar
1.0 RRULE #n repetition value). See 10.6 for a description of the start, rr_freq, inter-
val, fmask and Imask parameters. If no recurrence count can be calculated for occur-
rence, the function returns UNASSIGNED.

string MAKE_RRULE((boolean rrule2, string rr_freq, integer interval, integer fmask, in-
teger Imask, timestamp until): Creates a RRULE from the RRULE block parame-
ters specified (see 10.6 for a description of the start, rr_freq, interval, fmask, lmask and
until parameters). 1f rule2 is set to true, a iCalendar 2.0 style RRULE will be created,
otherwise, a vCalendar 1.0 RRULE is returned.

boolean PARSE_RRULE(boolean rrule2, string rrule, timestamp start, string &rr_freq,
integer &interval, integer & fimask, integer &Imask, timestamp & until): Parses
a RRULE string into RRULE block parameters specified (see 10.6 for a description
of the m_freq, interval, fmask, lmask and unti/ parameters). If rrule? is set to true, a iCal-
endar 2.0 style RRULE is expected in rrule, otherwise, a vCalendar 1.0 RRULE is ex-
pected. The start parameter must be set to the starting point of the recurring calendar
entry. The function returns true if 77z/e could be successfully parsed, false otherwise.

integer ISRELATIVE (timestamo #s): No longer supported in 3.1. Usually ISFLOATING()
provides the same functionality, but please read 5.1 about the general changes in the
way timestamps are represented in 3.1 vs. 3.0.

SETRELATIVE (timestamp &ts): No longer supported in 3.1. Usually SETFLOATING()
provides the same functionality, but please read 5.1 about the general changes in the
way timestamps are represented in 3.1 vs. 3.0.

timestamp LOCALIZEDASUTC(timestamp ts): No longer supported in 3.1. The functional-
ity itself is no longer needed as the new 3.1 way of representing timestamps (see 5.1)
makes it obsolete.

integer LOCALZONEOFFSET():No longer supported in 3.1. Replacements are usually
USERTIMEZONE() or TIMEZONESYSTEMNOW()).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 41

timestamp RELATIVEASUTC(timestamp ts): No longer supported in 3.1. The functionality
itself is no longer needed as the new 3.1 way of representing timestamps (see 5.1)
makes it obsolete.

SETZONEOFFSET (timestamp &ts, integer zoneoffset): No longer supported in 3.1. Usu-
ally SETTIMEZONE() provides the same functionality, but please read 5.1 about
the general changes in the way timestamps are represented in 3.1 vs. 3.0..

timestamp UTCASRELATIVE (timestamp ¢s): No longer supported in 3.1. The functionality
itself is no longer needed as the new 3.1 way of representing timestamps (see 5.1)
makes it obsolete.

6.14.4 Time zone related functions

Some of the time zone related functions have a Zmezgonespec parameter. This parameter specifies a
time zone in one of the following ways:

¢ when a timestamp type is passed, the time zone is copied from the specified timestamp.

e when a integer type is passed, the time zone is set to the given number of seconds east of
GMT/UTC

e when an empty value or the string value "FLOATING" is passed, the result is no time
zone (i.e floating timestamp).

e when a string value of "USERTIMEZONE" is passed, the current user time zone (see
5.2) is used.

e when a string value of "SYSTEM" is passed, the current system time zone is used.

e when a string value beginning with "BEGIN:VTIMEZONE" is passed, it is paresed as a
timezone specification in VIIMEZONE format.

® when the string value names one of the defined zone names (see list in chapter 17), the
corresponding zone is used.

e finally, the string can specify a time zone offset specified in ISO8601 format.

Script functions that return a #imezonestring either return:
e the name of the time zone (see list in chapter 17) as string
e an empty string for floating timestamps
e atime zone offset in ISO8601 format for fixed UTC offset time zones

timezonestring TIMEZONE (timestamp atime): returns the time zone associated with aze.

string VIIMEZONE (timestamp atime): returns the time zone associated with a#me format-
ted as a VIIMEZONE entry.

SETTIMEZONE (timestamp &atime, timezonespec zone): sets the time zone of atime to
the specified zone. Note that the local time value of azme does not change (which
means that the absolute time value changes by the difference of the old and new time
zone).

integer ISFLOATING (timestamp ¢s); returns true (1) if #is a floating timestamp (i.e. a time-
stamp not associated with a time zone).

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 42

SETFLOATING(timestamp &atime): this is a shortcut for SETTIMEZONE (atine,
"FLOATING"), and removes time zone information from a#me, thus making atime a
floating timestamp (not associated to any time zone).

string USERTIMEZONEY(): returns the current user time zone (see 5.2), as set by
SETUSERTIMEZONE() or <usertimezone>. The default is "SYSTEM".

SETUSERTIMEZONE((timezonespec tz): sets the user time zone (the time zone context
used to evaluate local time specifications which do not include an originating time

zone information, see 5.2). The default user time zone can be configured using
<usertimezone> (see 11.22) and defaults to "SYSTEM".

timestamp CONVERTTOZONE((timestamp atime, timezonespec zone [,boolean doUn-
float]): returns atime converted to the specified gome. This means that the absolute
value (UTC time) of the result will be the same as that of azme, but represented in a
different time zone and therefore having a different local time value. A special case
are floating time stamps — these cannot be actually converted to a different time
zone, as they have no zone to begin with. If doUnfloat is set to true, floating time
stamps will be made local time of the specified zone, without changing their time
value. Otherwise, floating timestamps will be returned as-is.

timestamp CONVERTTOUSERZONE (timestamp atime [,boolean doUnfloat]): this is a
shortcut for CONVERTTOZONE (atime, "FLOATING", doUnfloal), and returns
atime converted to the current user time zone.

integer ZONEOFFSET (timestamp ts): returns offset in number of seconds, east of

UTC/Greenwich of #. If # is a floating timestamp, this function will return
UNASSIGNED.

6.14.5 Debug log functions

DEBUGMESSAGE((string message): writes message to the debug log. Note that these mes-

sages are only shown in the log if the "hot" option in <debug> (see 8.11.2) is en-
abled.

DEBUGSHOWITEM(boolean refltem): In scripts that have access to a data item (a collec-
tion of fields as defined in a field list, see 6.9.3), this function can be called to dump
the contents of the data item into the log file (if the debug options are set such that
user data can be shown in logs at all, see "userdata" option in 8.11.2). For scripts that
operate on two data items (for example: <comparescript>, see 10.5.12), setting re-
[tem to true shows the reference item (depending on the context, also called "loos-
ing" or "old" item) instead of the normal (sometimes called "winning") item.

DEBUGSHOWVARS(): This dumps a list of all local variables of the current script and their
current values to the debug log.

integer GETDEBUGMASK(): returns the currently active debug options for the current sync
session as 32 bit integer value representing flags for each possible debug option, see
8.11. This is useful to temporarily change the debug options in a script (see
SETDEBUGOPTIONS and SETDEBUGMASK) and later restore the original op-
tions.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 43

SETDEBUGMASK(integer mask): should be used only to restore a debug channel configura-
tion previously saved from GETDEBUGMASK. To enable or disable debug chan-
nels, please use SETDEBUGOPTIONS.

SETDEBUGOPTIONS(string optionname, boolean enable): This is the equivalent of the
<enable> (when enable is true) and <disable> (when enable is false) tags in the <de-
bug> section, see 8.11.2. The same names that are valid for the "option" attribute in
<enable> and <disable> can be used for gptionnanme.

SETXMLTRANSLATE(boolean enable): This function allows switching on or off writing an
XML transcript of the SyncML messages for the current session. This can be used
for example in the <logininitscript> (see 11.33) to selectively switch on XML loggin
based on device or user name. See <xmltranslate> in 8.11.14 for details about the
files created.

SETMSGDUMP (boolean enable): This function allows switching on or off dumping SyncML
messages to files for the current session. This can be used for example in the <login-
initscript> (see 11.33) to selectively switch on SyncML message dumping based on
device or user name. See <msgdump> in 8.11.15 for details about the files created.

6.14.6 Other functions

integer ABS(integer value): returns the absolute of va/ue.

integer SIGN (integer value): returns the sign of value, that is, 0 if value is 0, 1 if valne>0 and -1 if
valne<O0.

integer RANDOM(integer range [, integer seed)): returns a random number between 0 and
range-1. The optional seed can be specified to seed the random generator.

string SYNCMLVERS(): This function returns the SyncML version number (currently one of
"1.0", "1.1" or "1.2") of the running session. This can be useful to implement version
dependent behaviour.

ABORTSESSION (integer statuscode): aborts the current session and reports statuscode as the
reason for aborting the session. Note that statuscode can be 0 to abort silently.

integer COMPARE (valuel, value2): returns 0 if valuel equals value2, -1 if valuel < value2, 1 it
valuel > valne2 and -999 if values cannot be compared.

integer CONTAINS (&variable, value [, bool caseinsensitive]): returns 1 (true) if value is
contained in variable. "Contain" means that value is a substring of variable, or in case
value is an array,.it means that value is a substring of one of variable's elements. casein-
senstive can be set to make the comparison case insensitive.

APPEND (&variable, value): appends value to the contents of variable. 1f variable is an array,
appending means adding a new element. If va/ue is an array, all elements of value will
be appended to variable one by one.

boolean ISAVAILABLE(field): checks if fie/d (which must be a field from the <fieldlist>, see
10.1, of the item processed in the current script's context) is explicitly available for
the current sync. Explicitly available means that the remote's device information was
received and contained a list of fields supported by the remote party. If this is the

case, this function returns true or false. If a non-field (e.g. a script local variable) is
specified for field, UNASSIGNED is returned. If a feld is specified, but no explicit

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 44

availability is known from the remote, the function returns EMPTY. This function is
useful in <incomingscript> and <outgoingscript> (see 10.5.9) to format data differ-
ently depending on what fields are supported — for example including some data
from unsupported fields into the description text.

REQUESTMAXTIME (integer maxtime): this allows to set the max time in seconds the
server should spend processing a request before it should return an answer to the cli-
ent. See <requestmaxtime> in 11.3 for details.

REQUESTMINTIME (integer mintime): this allows to artificially delay server responses to
be sent not earlier than mzntime seconds after the request reached the server. See <re-
questmintime> for details (11.4).

FORCELOCALTIME (boolean flagvalue): this allows modifying the flag that is controlled by
the <forcelocaltime> directive in <remoterule>, see 11.36.13.

FORCEUTC(boolean flagvalue): this allows modifying the flag that is controlled by the <for-
ceutc> directive in <temoterule>, see 11.36.14.

SHOWCTCAPPROPERTIES(boolean flagvalue): this allows modifying the flag that is con-
trolled by the <showctcapproperties> directive (see 11.25).

ENUMDEFAULTPROPPARAMS(boolean flagvalue): this allows modifying the flag that is
controlled by the <enumdefaultpropparams> directive (see).

string LOCALURI(): returns the original URI used by the client to start the server session.

string REMOTERULENAME(): returns the name of the active <remoterule> (see 11.30) or
EMPTY if no remoterule is active in the session. This can be used to implement de-
vice-specific behaviour.

SETREADONLY (integer readonly): 1f readonly is set to TRUE, the session will be read-only
(clients cannot apply any changes to the server's database). See also per-datastore
read-only option in 11.34.4 and per-datastore version of SETREADONLY in
11.34.21.

SETDEBUGLOG(integer enabled): Enables or disables the session log for this session.

SETLOG(integer enabled): Enables or disables logging this session's tesult in the log file/log
table.

any_type SESSIONVAR(string varname): Returns the value of the session context variable
varname (Session context variables can be declared for example in <sessioninitscript™>,
see 11.11). This allows to access context variables (see 6.9.1) of the session's context
from any script (and not only from those running in session context). This allows us-
ing session context variables as a kind of global variables. Note that accessing vari-
ables this way is less efficient (access by name needs string search) than normal vari-
able references (access through precompiled index). If sarmame does not exists,

UNASSIGNED is returned.

SETSESSIONVAR(string varname, value): Assigns a new value to the session context variable
varnane.

integer SHELLEXECUTE(string command, string params, integer backgroundflag):
Calls the operating system's shell to execute the command with the specified params. 1f
backgronndflag is true, the shell process 1is started in background and
SHELLEXECUTE immediately returns with result=0 (Note that background
execution might not be available on all platforms!). Otherwise,

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 45

SHELLEXECUTE waits until the shell command completes and then returns the
exit code of the command executed. The exit code is operating system specific. In case
that the command could not be started at all, SHELLEXCUTE returns -1.
Note: using SHELLEXECUTE often makes the configuration file platform-
dependent. Therefore, using the "platform" attribute (see 4) is recommended in
scripts using SHELLEXECUTE to make sure the script only runs on the right plat-
form, or to provide multiple variants of the script for each platform.

SWAP (variablel, variable2): swaps the contents of variablel and variable2.

UPDATECLIENTINSLOWSYNC (boolean flagvalue): this allows modifying the flag that is
controlled by the < updateclientinslowsync > directive in <remoterule>, see 11.306.6.

UPDATESERVEINSLOWSYNC(boolean flagvalue): this allows modifying the flag that is
controlled by the <updateserverinslowsync> directive in <remoterule>, see 11.36.7.

TREATASLOCALTIME (boolean flagvalue): this allows modifying the flag that is controlled
by the <treataslocaltime> directive in <remoterule>, see 11.36.15.

TREATASUTC(boolean flagvalue): this allows modifying the flag that is controlled by the
<treatasutc> directive in <temoterule>, see 11.36.16.

string TYPENAME (value): returns the name of the type of value.

string ITEMDATATYPE (): returns the internal name of the datatype of the current item
(only usable in context that are processing a data item at all). The datatype name is
the name specified in the <datatype> tag, see 10.5

string ITEMTYPENAME (): returns the MIME type name of the datatype of the current item
(only usable in context that are processing a data item at all). The datatype name is
the name specified in the <typestring> tag, see 10.5.3 (or implicitly set by the
basetype attribute of <datatype>, see 10.5)

string ITEMTYPEVERS (): returns the type version string of the datatype of the current item
(only usable in context that are processing a data item at all). The datatype version is
the name specified in the <versionstring> tag, see 10.5.3 (or implicitly set by the
basetype attribute of <datatype>, see 10.5)

6.15 Debugging scripts

Scripts can be debugged by switching on the "serzp#s" option in the <debug> directive (see
8.11.2). This will cause that every script line processed to be shown in the debug log along with
some information about the expressions evaluated and variables assigned (see "expressions” option
in the <debug> directive for enabling more in-depth expression debugging). If you use HTML
formatted logs, the script source will be colored gray for script lines that were skipped unexe-
cuted due to flow control.

Note that using this debug option not only can generate huge logfiles and degrades per-
formance, but also needs slightly more memory per sync session as the script engine must keep
the script source code in memory (when debugging is off, scripts are stored in a compressed,
tokenized form only).

When the "exoi" debug option is enabled as well, the script processing is logged in extensive
detail — this is only recommended for hard core debugging.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 46

The script engine is designed for efficiency, and is not meant to be a general-purpose program-
ming language, and therefore there is no real debugger available. If your scripts get too large and
complicated to be debugged and tested with the simple debug log feature, you should probably
re-think your application design in general. Scripts are provided to add more flexibilty to adapt
SyncML to your application, but not to implement things that should be done in the application
itself.

If you feel that the adaption to your database exceeds what can be done reasonably with scripts,
please consider using the plugin API for database adapters available in the PRO products.
This allows you to separate all database access code into an external plugin project written in C,
C++, Java or .net. See 14 for details.

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 47

7. Filters

There are three types of Filters that can be used:

e Inclusive or Temporary Filter expressions: This type of filter defines conditions for con-
tent to be transmitted to a remote party, that is, zzciuded into the syne set (the set of items that
are being synced). However, a znclusive tilter does not exclude items from the sync set. This means
that if for instance the client already contains items (from a previous sync session) that do not
pass an inclusive filter, they will not be deleted on the client (in contrast, with a dynamic or
static exclusive filter, see below, these would be deleted).

e In SyncML 1.0 and 1.1 terminology, these type of filters were called Targer Address Filters
(I'AF), and can be specified as part of the database path using a CGI syntax.

e In SyncML 1.2 and later, these filters are called Inc/usive Filters and are transmitted from
client to server using the <Filter> and <FilterType> SyncML elements in the CGI syntax
(see 7.4).

e Dynamic exclusive Filter expressions: These allow clients to request synchronizing only a
subset of the database by specifying constraints.

e In Synthesis SyncML servers dynamic exclusive filters can be specified similar to TAF in the
database path. This is a Synthesis-specific option and not part of the SyncML standard.
An events path could look like "./events?/fiDTSTART>20030630T000000Z)" which
would restrict the sync set to events starting after July 2003.

e In SyncML 1.2, the <Filter> and <FilterType> SyncML elements are used to specify ex-
clusive filters in the CGI syntax (see 7.4). Synthesis SyncML servers still support the
SyncML 1.1 methods (TAF and /fi, even for SyncML 1.2).

e Static Filter expressions used in the config file: Filters are also used internally, for exam-
ple to split a common "calendar" database into "events" and "tasks" or to implement visibility
control for records based on a special database field or the type of device connected (as an
example some devices cannot handle dates before a certain date, so these can be filtered out
by setting a static filter. See the sample config files for examples.

The znclusive filters are simply applied just before sending data to the client — only data passing
the filter is included, other data it is just ignored and not sent to the client.

The term dynamic is used with exclusive filters to specify that the filter might change between sync
sessions and therefore some records which were filtered out (= exv/uded) in one session get visible
in the next session and vice versa. Dynamic filters can put considerable load to the SyncML server
as applying them might require the server to load all records from the database instead of the
changed ones. However, if the dynamic filter is such that it can be translated to a SQL WHERE
clause, the performance penalty is much smaller (see <dbcanfilter> in 12.20.9).

A static filter 1s a filter that is guaranteed not to change between sync sessions with a particluar
device, such as filter specified in the server configuration or set depending on the device that is
being synced. S7atic filters are much more efficient because only those records that have changed
or added need to be filtered.

There is one important reason why the Synthesis SyncML engine supports filters in parallel with
scripting (which might look like the same thing was implemented twice): The filter syntax is such
(much simpler than script expression syntax) that the SyncML engine can translate most filter
expressions directly to SQL. WHERE clause expressions. This is a huge performance benefit,
because this way, only needed data gets fetched from the database at all (while otherwise, as ex-
plained above for dynamir filters all records need to be fetched from the database only to be

©2002-2008 by Synthesis AG, Ziirich, Switzerland — www.synthesis.ch

Page 48

checked against a filter. This might be needed for complex situations where a filter is not flexible
enough (see <filterscript> in 10.5.10), but should be avoided whenever possible.

7.1 Test and Make-Pass modes

Filters are used by the SyncML engine in two modes:

Test Mode: This is the normal mode, and means that a filter expression is applied to a data
item, which gives a result of true (item passes) or false (item does not pass).

Make-Pass Mode: Sometimes, the engine must make sure that an internally generated item
will pass a certain filter. In this case, the filter expression is applied to the data item first like
in test mode, and if the result is true, nothing more happens. If the result is false (item does

not pass), the assign-to-pass modifiers (see below, 7.2) in the filter expressions are applied from

left to right until the data item passes the filter.

7.2 Basic filter syntax

The filter syntax might look a little unusual - however it is modeled after the TAF (Target Ad-
dress Filter) syntax proposed by the SyncML standard for the Zezporary filters. The SyncML stan-
dard does not specity dynamic or static filters, but we use the same syntax (with some extensions)
for all three filter types.

A filter excpression either consists of a single filter term or multiple filter terms concatenated with
logical operators.

Logical gperators are: & (and), | (or). Note that there is no "NOT" operator.

A filter term consists of a filter expression enclosed in parantheses or of an zdentifier followed by a

comparison operator tollowed by a constant.

A identifier is usually the name of an property or header field in a content format like vCard

or RFC2822 email, but can also directly reference internal fields from the <fieldlist>. There

are also a number of predefined special identifiers. Details see 7.3.

Comparison operators are the usual =,<>, >, <, >=, <=, In addition % means "contains" and $

means "does not contain" (for strings). Comparison operators can be preceeded by three optional

prefix characters, only in the following order:

e a colon, called the assign-to-pass modifier, which means "assign to make true". This modifier
is ignored in zest mode (see 7.1), but used when by the sync engine in make-pass mode (when
it needs to make a data item pass a filter and signals that assigning the value on the right
of the operator to the field on the left of the operator will make the filter term evaluate to
true). Note that,